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Experimental results of fault isolation approach for a 2-DOF helicopter
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Abstract Fault isolation increasingly becomes an important aspect for the feasibility and robustness of
systems. The knowledge of a fault’s presence offers important decision-making information related to
the control of a system (i.e. information to keep a system in a healthy and functional state) and/or also for
organizing maintenance. The case of a two degree of freedom (2-DOF) helicopter is studied. Practical
aspects related to the fault modeling and implementation, in order to have the possibility of a detailed
study of the used algorithm, are discussed. A previously developed model-based fault isolation algorithm
is implemented by using specific hardware. A comparison between simulations and experimental results
is also provided, and some directions for facing remaining challenges are also discussed.

3.1 Introduction

In recent years, fault diagnosis has been an important research topic, mainly because of its relationship
with the safety and reliability of industrial processes. Fault diagnosis is useful for establishing main-
tenance programs for devices that are part of control systems and for developing fault-tolerant control
schemes. In the last 50 years, different approaches for isolating faults in control systems have been pro-
posed, as seen in Blanke et al. (2016), Shen et al. (2017), Varga (2017), Zhang et al. (2018), and Ding
(2020). A failure in a control system is considered when a change in some parameters of the system
occurs in such a way that it operates outside the tolerance margin for which it was designed. For this
reason, it is important to establish mechanisms that allow determining when a fault occurs, which is
known as the fault diagnosis and isolation problem.

One of the first analytical redundancy algorithms for fault diagnosis is the so-called model-based ap-
proach, i.e. they are based on mathematical models, which can be consulted in Blanke et al. (2016)
and Ding (2020); here, the mathematical model plays a central role in the design of fault detection and
isolation algorithms. Other approaches that have been recently proposed appear in Patan (2019), where
neural networks are used primarily to determine fault-tolerant control algorithms; Concepts based on
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artificial intelligence have also been used to solve this problem, see Korbicz et al. (2004). Furthermore,
artificial intelligence and data-driven approaches have been employed to solve this problem. See Korbicz
et al. (2004) and Mansouri et al. (2020), as well as in Ding (2014) who includes some model-inspired
approaches. Fault diagnosis of hybrid dynamic and complex systems has been considered in Sayed-
Mouchaweh (2018). Furtermore an adaptive techniques for fault diagnosis are discussed in Shen et al.
(2017), and Wang et al. (2020) consider iterative learning approaches for fault diagnosis. The diagnosis
of fractional-order systems is studied in Martinez-Guerra et al. (2021), and fault diagnosis in switched
systems is revised in Du et al. (2021). Among the above mentioned books considering principally theo-
retical results, there are also references that consider specific applications, such as Zolghadri et al. (2014)
for fault diagnosis, fault-tolerant control, and the guidance of aerospace vehicles. Other aspects such as
the fault detection of wind turbine systems have been considered in Reza Karimi (2018). Induction mo-
tors fault diagnosis is discussed in Karmakar et al. (2016). Model-based condition monitoring, actuator,
sensors, machinery, plants, and drives are considered in Isermann (2011).

This work presents an analysis and design of a fault isolation scheme for a Quanser® 2-DOF Heli-
copter. Mainly, a Hamiltonian model of the system previously mentioned is derived. Faults in the system
are also modeled as well as implementation methods (with the results of this study). A fault isolation
scheme is derived using nonlinear decoupling and observer-based residual generation, as in Ramı́rez
et al. (2020). The implementation of the fault isolation algorithms, as well as the experimental results,
are also discussed. Some practical experiences related to the implementation are presented.

The rest of this work is organized as follows: the next section shows some preliminary results that will
be used later in the paper. The system under consideration is presented in Section 3, and details about the
design of the fault isolation scheme are considered in Section 4. The experimental results are presented
in Section 5, and, finally, some conclusions are summarized in Section 6.

3.2 Preliminaries

3.2.1 Generalized Hamiltonian systems

A class of nonlinear systems admits a representation in a generalized Hamiltonian form, as described by
Rodriguez-Alfaro et al. (2015), Sira Ramı́rez and Cruz Hernández (2001) and Van der Schaft (2017). It
is given by

ẋ = [J(x)+S(x)]
∂H(x)

∂x
+F(x)+Gu

y = C
∂H(x)

∂x
(3.1)

with the state vector x 2 ¬n, the input vector u 2 ¬m, y 2 ¬p is the output vector, G 2 ¬n⇥m being a
constant matrix, F 2¬n a vector of nonlinear functions and J 2¬n⇥n being a skew-symmetric intercon-
nection matrix (J(x) =�JT (x)) associated with a simple bilinear form, which represents the conservative
part of the system. S(x) 2 ¬n⇥n is a symmetric matrix (S(x) = ST (x)), C 2 ¬p⇥n is an output constant
matrix . H(x) is a smooth vector-valued function of and real values, and it can be understood as the
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generalized energy defined as

H(x) =
1
2

xT Mx (3.2)

where M is a constant matrix, symmetric and positive definite, and ∂H(x)/∂x represents the gradient of
H(x). Finally, F(x) is a vector field that contains the non-linear parts of the system.

3.2.2 Fault isolation schema

The fault isolation strategy utilized in this paper was presented in Ramı́rez et al. (2020); it is basically a
bank of nonlinear observer-based residual generators. Each residual generator is designed for a decou-
pled subsystem so that each subsystem is associated with a set of faults. Moreover, each subsystem is
obtained by taking advantage of the specific model structure of the 2-DOF helicopter.

In addition, the decoupling of the effect of some specific faults could be achieved by using the output
measurements, which are linear with respect to the state. This will be made clear later. Roughly speaking,
the residuals can be represented as shown in Fig. 3.1.

systemu(t)

u(t)
y(t)

y(t)

sub−model i y (t)
i

y(t)
u(t)
y (t)

i
r (t)i

residual
generator i

Fig. 3.1: Schematic of residuals

3.3 Helicopter with two degrees of freedom

The system used in this work is the Quanser® 2-DOF helicopter, which is a lab test prototype standing
on a fixed pedestal (that pivots) and consists of two motors: one on the front for the lift movement and
one rear or tail motor for the yaw movement. See Fig. 3.2.

The system model is represented by means of the following nonlinear equation, in vector form:

D(q)q̈+N(q, q̇)+gv(q) = t, (3.3)

where t 2 ¬2 represents the input vector, gv(q) 2 ¬2 is the vector of gravitational pairs, D(q) 2 ¬2⇥2

corresponds to the inertial matrix, which is symmetric and positive definite, N(q, q̇) 2 ¬2⇥2 models the
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Fig. 3.2: Schematic of the Quanser® 2-DOF helicopter

velocity quadratic effects generated by centrifugal and Coriolis forces. For the Quanser® system, define
the generalized coordinate vector q = [f ,y]T , where f and y are the pitch and yaw angles. Consider
t = [Up,Uy]T , and

D(q) =


m1l12 +m2l22 0
0 m1l12cos2(f)+m2l22cos2(f)

�
,

gv(q) =


m1gl1cos(f)�m2gl2cos(f)
0

�
.

3.3.1 Hamiltonian representation

Hamiltonian representation brings a structure to a model of a dynamic system and this will be used later
to design a fault detection and isolation scheme.

A way to obtain the Hamiltonian representation from the Euler-Lagrange representation (3.3) (as in
Van der Schaft (2017), for example) is by computing the generalized moment p(t), defined by

p = D(q)q̇ (3.4)

and the Hamiltonian function
H (q, p) =

1
2

pT D�1(q)p+U(q), (3.5)

where U(q) represents the potential energy of the system. Thus, the system s model (3.3) can be alter-
natively written as
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q̇ =
∂H (q, p)

∂ p
= D�1(q)p, (3.6)

ṗ = �∂H (q, p)
∂q

+ t =� ∂
∂q

✓
1
2

pT D�1(q)p
◆
� ∂

∂q
U(q)+ t, (3.7)

where ∂
∂qU(q) = gv(q).

The system equations that represent (3.3) are the following:

ẋ1 =
x3

l2(m1 +m2)
, (3.8)

ẋ2 =
x4

l2cos2(x1)(m1 +m2)
, (3.9)

ẋ3 =
�x2

4 sin(x1)

l2cos3(x1)(m1 +m2)
�gl cos(x1)(m1 �m2)+Up, (3.10)

ẋ4 = Uy (3.11)

where the system state vector is given by xT = [x1 x2 x3 x4] with x1 = f , x2 =y , x3 = ḟ and x4 = ẏ .
The control law t = [Up,Uy]T is a proportional derivative (PD) type controller, and it was tuned using a
procedure presented in Romero et al. (2012). The variables and parameters used in the previous equations
are as follows: x1(f) is the pitch angle; x2(y) is the yaw angle; x3(ḟ) corresponds to the pitch angular
velocity; x3(ḟ) represents the pitch angular velocity; x4(ẏ) gives the yaw angular velocity; Up is the
pitch control input; Uy corresponds to the yaw control input; m1 represents the mass of lift motor; m2 is
the mass of the tail motor; l1 corresponds to the length m1 to center of mass; l2 is the length m2 to center
of mass and g represents the gravity.

The following generalized Hamiltonian function is defined: H = 1
2xT x, with M = I4⇥4. H is the basis

of the generalized Hamiltonian representation

ẋ = J(x)
∂H(x)

∂x
+S(x)

∂H(x)
∂x

+

2

66664

x3
l2(m1+m2)

x4
l2cos2(x1)(m1+m2)

�x2
4 sin(x1)

l2cos3(x1)(m1+m2)
�gl cos(x1)(m1 �m2)

0

3

77775
+

2

664

0 0
0 0
1 0
0 1

3

775


Up
Uy

�

| {z }
u

, (3.12)

y =


1 0 0 0
0 1 0 0

�
∂H(x)

∂x
, (3.13)

where, ∂H
∂x = x, J(x) = [0] 2 R4⇥4, S(x) = [0] 2 R4⇥4.

3.3.2 Fault Modeling

Four possible faults are studied in this work: one for each sensor and one for each actuator. In general,
faults could be additive or multiplicative; however, in this paper the focus is on the case of additive faults,
which are modeled as exogenous inputs to the system. Note that faults can be also incipient, abrupt or
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intermittent, depending on the form in which they are manifested. See for example Chen and Patton
(1999), Ding (2013) and Isermann (2011).

3.3.2.1 Additive faults’ representation

As mentioned above, additive faults are modeled with additive terms in the actuators channels fai, as
well as in the sensors channels fsi, with i = 1,2,3. The representation of the system s model with faults
(sensor and actuator) is given as follows:

ẋ = J(x)
∂H(x)

∂x
+S(x)

∂H(x)
∂x

+F(x)+Gu+

2

664

0 0
0 0
1 0
0 1

3

775

| {z }
E f


fa1
fa2

�
, (3.14)

y = C
∂H(x)

∂x
+


fs1
fs2

�
. (3.15)

3.3.2.2 Fault decoupling

Sensor faults

In order to obtain two sub-models where each of them is associated with only one sensor fault, the
following strategy is used. Firstly, the output related to sensor one (output one) is considered; here, the
corresponding differential equation (3.8) of the states required to integrate output one is considered as
part of the sub-model one. Additionally, the differential equations of the states appearing in the previous
differential equations, i.e. equations (3.9), (3.10) and (3.11), should be included in the sub-model as well.

Secondly, referring to sub-model two, output two (related to sensor two) is considered. The corre-
sponding differential equations of the states required to integrate output two are considered as part of
the sub-model two. As in the first case, the differential equations of the states appearing in the previous
differential equations should also be included in the sub-model.

Sub-model one. For the first sensor, only the state x1 is involved, so the differential equation for
ẋ1 is required first. Because, x3 appears in the equation of ẋ1, however, the differential equation for ẋ3
should also be included in the sub-model. Note that x4 is present in the differential equation of ẋ3, so the
differential equation for ẋ4 is also required in sub-model one:

ẋ1 =
x3

l2(m1 +m2)
, (3.16)

ẋ3 =
�x2

4 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up + fa1, (3.17)

ẋ4 = Uy + fa2, (3.18)
ys1 = x1 + fs1 (3.19)
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Note that in sub-model one, the fault of sensor two ( fs2) is not affecting, i.e. it is not present in the
submodel one.

Sub-model two. For the second subsystem, only the second output is considered. The state variable
involved is x2, so ẋ2 should be included. In the differential equation of ẋ2, x1 and x4 are also present;
therefore, ẋ1 and ẋ4 are included. Finally, x3 is also present, so ẋ3 is also included:

ẋ1 =
x3

l2(m1 +m2)
, (3.20)

ẋ2 =
x4

l2 cos2(x1)(m1 +m2)
, (3.21)

ẋ3 =
�x2

4 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up + fa1, (3.22)

ẋ4 = Uy + fa2, (3.23)
ys2 = x2 + fs2 (3.24)

Note that in the sub-model two, the fault of sensor one ( fs1) is not affecting, i.e. it is not present in the
submodel two.

Actuator faults

Similar to the case of sensor faults, we obtained the decoupled subsystems that are sensitive only to
one particular fault. Thus, the corresponding residual is generated from an observer based on output
feedback.

Sub-model three. The first actuator fault ( fa1) is connected to the differential equation of the state
variable x3 of Up since x1 is known and x2 is assumed to be free of fault.

ẋ1 =
x3

l2(m1 +m2)
, (3.25)

ẋ3 =
�
�
ẋ2l2 cos2(x1)(m1 +m2)

�2 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up + fa1, (3.26)

y1 = x1 + fs1. (3.27)

Note that x4 is not available, but it can be obtained from the dynamics of the system as

x4 = ẋ2l2 cos2(x1)(m1 +m2), (3.28)

and ẋ2 is obtained through numerical differentiation from the measurement: y2 = x2 + fs2.
Sub-model four. The differential equation for ẋ4 is now considered. Note that no additional state

variable is strictly required, however, in order to connect with the output the differential equation because
ẋ2 is also included in the model together with the second output:
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ẋ2 =
x4

l2 cos2(x1)(m1 +m2)
=

x4

l2 cos2(y1� fs1)(m1 +m2)
, (3.29)

ẋ4 = Uy + fa2, (3.30)
y2 = x2 + fs2. (3.31)

in addition x1 is obtained from the first output equation as: x1 = y1� fs1
Remark 1. Note that for fault decoupling an inspection procedure is used instead of a nonlinear trans-

formation, in other words, for sensor i, the output is selected (omitting all other outputs) as well as all the
differential equations associated with the states that explicitly appear in the selected output and the ones
required to complete the states present in the differential equations selected. In Table 3.1 a summary of
the sensitivity of each of the different faults is presented, where

p
means that the sub-model is sensitive

to the corresponding fault.
The fault incidence matrix is as follows:

Table 3.1: Sensitivity of sub-models with respect to faults

sub-models fs1 fs2 fa1 fa2

1
p

0
p p

2 0
p p p

3
p p p

0
4

p p
0

p

where
p

means that the corresponding sub-model is affected (at least theoretically) by the respective
fault. In contrast, 0 means that the sub-model is decoupled from the respective fault.

3.4 Fault isolation for a 2-DOF Helicopter

3.4.1 Residual Generator Design

The observer-based residuals are built following the method presented in Ramı́rez et al. (2020). It takes
advantage of the Hamiltonian structure of the model, and it is rewritten here for completeness:

ẋ = [J(y)+S(y)]
∂H(x)

∂x
+F(x)+Gu, (3.32)

y = C
∂H(x)

∂x
. (3.33)

The state x of the nonlinear system (3.1) is estimated by the system

˙̂x = [J(y)+S(y)]
∂H(x̂)

∂ x̂
+F(x̂)+Gu+K(y�h), (3.34)

h = C
∂H(x̂)

∂ x̂
, (3.35)
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if the pair (C,S) is observable or at least detectable and the matrix

X = MT


S� 1
2
(KC+CT KT )

�
M+P (3.36)

with P = 1
2


M ∂F(x)

∂x + ∂F(x)
∂x

T
MT

�
is negative definite.

For the construction of the bank of residual generators, an observer for each sub-model should be
designed. Considering the sub-model one, which has been obtained to have the effect of the sensor of
fault one ( fs1), and the analysis made, the actuator faults fa1 and fa2 also affect sub-model one:

ẋ1 =
x3

l2 (m1 +m2), (3.37)

ẋ3 =
�x2

4 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1 �m2)+Up, (3.38)

ẋ4 = Uy + fa2, (3.39)
ys1 = x1 + fs1. (3.40)

leads to its generalized Hamiltonian representation, with

∂H
∂x

= [x1 x3 x4]
T . (3.41)

The measurement of the output variables was performed by two rotary optical encoders: one placed
at the base of the platform, which allows the yaw angle to be measured y , and the other placed in the
center of the platform, which measures the pitch angle f . See Fig 3.3.

Fig. 3.3: Helicopter structure taken from Quanser Inc. (2012)

The parameters of the previous model are the following:
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J(x) = [0] 2 R3x3, S(x) = [0] 2 R3x3, F(x) =

2

64

x3
l2(m1+m2)

�x2
4 sin(x1)

l2cos3(x1)(m1+m2)
�gl cos(x1)(m1�m2)

0

3

75 ,

G =

2

4
0
1
0

0
0
1

3

5 , C =
⇥
1 0 0

⇤
.

The pair (C,S) is detectable according to Definition 2.1 in Sira Ramı́rez and Cruz Hernández (2001)

since the matrix


C
l I3⇥3�S

�
is of full rank for any value of l in Z<0 = {l̄ 2 Z : ¬{l̄}< 0}. Thus, the

residual is defined from the observer:

˙̂x1 =
x̂3

l2(m1 +m2)
+L1(y1� x̂1),

˙̂x3 =
�x̂2

4 sin(x1)

l2cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up,

˙̂x4 = Uy,

ŷs1 = x̂1.

Note that the residual is designed from a copy of the original subsystem and the correction factor
L1(y1� ŷ1).

For the fault in the second sensor ( fs2) and those in the two actuators ( fa1) and ( fa2), the decoupling
is similar to the procedure utilized in the fault ( fs1).

In Table 1, we can see that if single faults are occurring, they can be isolated. The four residuals
are obtained assuming that only one fault at a time is present and not all simultaneously. In addition,
a residual is obtained considering a derivative in time, so obtaining this derivative could be a difficult
task in the presence of noise. It is important to notice that the generation of residuals based on observers
constitutes a reliable option for reducing noise effects because of the inherent filtering characteristic of
the observer; see Rodriguez-Alfaro et al. (2015).

3.5 Experimental results

The 2-DOF experimental platform consists of a helicopter s body mounted on a rigid metal base. It has
two motors mounted perpendicularly to each other. This emulates the typical helicopter configuration
with a main rotor, which generates the pitch motion, and a tail rotor that produces the yaw motion. DC
motors work with a nominal voltage of 12 V. The platform parameters are shown in Table 3.2.

The measurement of the output variables was carried out by two rotary optical encoders: one placed
at the base of the platform, which allows the yaw angle to be measured y , and the other placed in the
center of the platform, which measures the pitch angle f (3.3).
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Table 3.2: The platform parameters

Parameter Description Value
m1 Mass of lift motor 0.014kg
m2 Mass of tail motor 0.232kg
11 Length m1 to center of mass 0.203m
12 Length m2 to center of mass 0.203m
g Gravity 9.8m/s2

To implement the algorithm, the Simulink© tool from MATLAB© was used. Data acquisition was
performed using an Arduino Mega 2560, which consists of a 54 input/output pins, including 14 pins
with the ability to work as pulse width modulation and 16 pins as analog inputs, a microprocessor, a 16
MHz crystal, and a 256K flash memory, with a working range between 7 V and 12 V. In the power part,
a SparkFun Monster Moto Shield was used, with a capacity of 16 V, and a current of 30 A, 20 kHz of
PWM frequency.

It is important to mention that the faults produced in each of the physical tests were in a proportion of
50% with respect to the output, and they were presented as abrupt faults.

Introduced sensor faults

They are considered abrupt failures in the sensors; they appear suddenly and affect the measured signal
of the encoders. As a result, the signal used to read the pitch and yaw angles, which is later fed back to
the control algorithm, presents deviations between estimated and the current (real) angle of the helicopter
position.

To produce a failure in the sensors, we considered adding an external signal to the sensor s signal
that feeds the algorithm. The signal is formed virtually from a block of noise-limited according to a
percentage of the failure with respect to the output.

Introduced actuator faults

Helicopter motors are considered actuators that convert electrical energy into rotary motion. Propellers
generate thrust force that produces displacement in pitch and yaw, respectively. Because of the aerody-
namic profile of the propellers, when rotating, a difference in speed is obtained on each side of the blade
between the fluid on one side and the other. Therefore, the difference in speeds leads to a difference in
pressure, and, thus, a force that is perpendicular to the plane of rotation is generated, which is known as
the propulsion force. Once the helicopter propeller begins to rotate, it picks up the air and is an accel-
erator. The speed of the air behind the disk, multiplied by the mass of displaced air, gives us the thrust
force. Based on this idea and in order to cause a decrease in the thrust force of the helicopter, different
ways of blocking the air (like covers) surrounding the helicopter were designed that correspond to 50%
of the area of the rotating disk, which, when placed on the propellers, reduced the airflow, causing the
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helicopter to lose thrust and lift. These covers were placed abruptly in order to have the same effect as a
partial actuator failure.

3.5.1 Fault scenarios and experimental results

In order to show the effectiveness of the designed residuals, four cases are presented, one for each
considered fault. For each case, the four residuals obtained from the experimental platform are shown.

Fault in sensor one
A 50% change in the sensor signal of the output one is considered, i.e., of the measured angle f . The
change occurs 15 seconds after the initial time.

9 10 11 12 13 14 15 16 17 18 19 20

r
1

-1

0

1

9 10 11 12 13 14 15 16 17 18 19 20

r
3

-1

0

1
9 10 11 12 13 14 15 16 17 18 19 20

r
2

-1

0

1

time(s)
9 10 11 12 13 14 15 16 17 18 19 20

r
4

-1

-0.5

0

0.5

1

Fig. 3.4: Residuals’ response to sensor fault one ( fs1)

Fault in sensor two
A 50% change in the sensor signal of output two is considered, i.e., of the measured angle y . The change
occurs 15 seconds after the initial time.

Fault in actuator one
An approximated 50% change in the first actuator signal is considered. The change occurs 15 seconds
after the initial time approximately.

Fault in actuator two
An approximated 50% change in the second actuator signal is considered. The change occurs approxi-
mately 15 seconds after the initial time.
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Fig. 3.5: Residuals’ response to sensor fault two ( fs2)
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Fig. 3.6: Residuals’ responses to an actuator one fault ( fa1)

3.6 Conclusion

Model-based fault isolation algorithms represent an interesting alternative for diagnosis in many pro-
cesses. Fault isolation should be considered from the beginning of the design processes in order to obtain
a better result. Because the considered faults correspond to the sensor and actuator, a simple procedure
was used in order to obtain dynamic redundant relations that can be used for the residual design. Consid-
ering a class of port-Hamiltonian nonlinear systems, a systematic observer-based procedure for residual
design was considered. The designed residuals were tested in a simulation and afterwards were imple-
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Fig. 3.7: Residuals’ responses to an actuator two fault ( fa2)

mented to be tested in a real-time embedded system. Fault isolation was obtained for the four single
faults considered, in which one case also required a specific residual evaluation algorithm (how the sen-
sor fault two, residual one, which should have been zero, but it had some reaction). An important aspect
was how the fault was implemented because it allowed us to make a repetitive experiment. Some topics
that could be part of future work include seeking to reduce the thresholds for fault detection and working,
in this way, with small magnitude faults. On the other hand, it is essential to reduce fault detection time
and isolate coupled faults. Finally, it is also of great interest to propose control strategies that allow the
system to be tolerant when a fault occurs.
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