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Chapter 6
Leak localization in water distribution networks using machine learning
based on cosine features

Ildeberto Santos-Ruiz', Francisco-Ronay Lépez-Estrada!, Viceng Puig?, and Guillermo
Valencia-Palomo®

Abstract Locating leaks in water distribution networks is vital in drinking water management. This
chapter presents a method for leak localization using pressure measurements modified by a nonlinear
transformation related to direction cosines in the pressure space. Direction cosines are used as input
variables in classifiers that locate leaks by associating them to the closest node in the distribution net-
work. The feature extraction process is derived from hyper-parameter optimization with k-NN classifiers,
but it is generalized to other classifiers based on supervised learning. The method was tested with physi-
cal measurements in some sectors of the Madrid network and synthetic data obtained by simulation with
EPANET on a model of the Hanoi network. Some comparisons with other machine learning techniques,
using raw pressures and pressure residuals, are performed to illustrate leak localization effectiveness
when considering directional features.

6.1 Introduction

Loss caused by leakage is an underlying problem in drinking water management, as about one third of
chemically treated water is lost globally because of leaks in distribution systems (OECD, 2016). Leaks
must be detected and located promptly to be repaired in a short time and minimize the volume leaked. The
leak localization problem becomes challenging because many leaks cannot be located visually because
of the leaking liquid seeping underground instead of emerging to the surface.

The leak management process in a Water Distribution Network (WDN) consists of several stages.
First, the leak must be perceived: the existence of water loss must be detected. If the leak is not visible,
then a small region enclosing the leak (a leakage hotspot) must be estimated using calculations based on
available hydraulic measurements. Second, to repair a leak, it must be accurately located using physical
inspection and specialized devices, e.g., a geophone and correlators (Pilcher et al., 2007; Puig et al.,
2017). The methods described in this chapter belong more to the prelocalization stage, which is intended
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to locate the closest nodes to the leak. Determining these nodes is helpful for the operators to locate
the actual leak point in a short time. This task, however, is not trivial because of the following: small
number of sensor measurements available compared with a large number of possible leak locations,
the uncertainty in individual user consumption, and the noise and unpredictable transients that affect
the certainty of the measurements. These difficulties, among others, make locating leaks a challenging
problem; even with the results and achievements that will be discussed in the final sections, the leak
localization problem remains open.

The proposed method is based on pressure residuals, which are the difference between nominal pres-
sures (leak-free pressures, estimated from a network model) and current leaky pressures measured at
specific network sensing nodes. A substantial difference from other leak localization methods is that the
proposed method is not based on the magnitude of the residuals but on its direction, which is character-
ized by the so-called direction cosines.

The chapter first presents the state of the art that summarizes the most relevant previous works in this
area. A simplifying hypothesis in these works is that single leaks occur at the nodes. Although leaks can
appear anywhere in the network, this assumption simplifies the computation to estimate their position.

The leak localization problem is generally undetermined. Therefore, localization methods may fail
to isolate the correct leaky node. It is possible, however, to identify candidate leaky nodes close to
the actual leaky node, and it is essential to determine how good the predictability of each method is.
Therefore, after presenting the literature review, some metrics will be described to evaluate a specific leak
localization method and its effectiveness compared with other methods. The case studies used to validate
the proposed methods will then be presented. Next, the methodology for leak localization considering
both time-independent (steady-state) and extended period leak localization will be described. Finally, the
results obtained in the case studies will be presented and discussed.

6.2 State of the art on leak localization in WDN

In the literature, there are different works reported in the context of leak detection and localization; for
example, Pudar and Liggett (1992) formulated a solution based as an inverse problem of a steady-state
hydraulic model by minimizing the differences between measurements and simulated states. By solving
the inverse problem, the network model parameters, such as leak flow rate and location, are determined
from the sensor measurements. However, the inverse problem is generally undetermined in an operational
water network because of the small number of sensor measurements available.

To solve the indeterminate problem for leak localization when there are multiple equivalent leak can-
didates, Pudar and Liggett (1992) minimized the Ly-norm of the leak parameters. Conversely, Berglund
et al. (2017) reduced the number of unknown measurements by selecting candidate nodes before solving
the optimization problem. Recently, Blocher et al. (2020) addressed the inverse problem of leak local-
ization using regularization methods to mitigate the ill-posedness effect. Using a regularization term, the
authors solve the inverse problem to estimate leak hotspots by minimizing the sum of squared residuals,
which represent the difference between measurements and steady-state model simulations. The perfor-
mance of leak localization with this method depends on the regularization parameter choice and does not
consider the uncertainty in pressures and residuals.
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Sanz and Pérez (2015) and Sanz et al. (2016) also formulated an underdetermined inverse problem for
demand calibration in order to solve the leak localization problem. To solve the ill-posed problem, Sanz
and Pérez (2015) grouped the demand nodes based on the measured pressure sensitivity to a change in
a node demand. The deviation of the calibrated demand from the expected demand for a given group
indicates the presence and approximate location of a leak (Sanz et al., 2016). Prior assumptions about
leak candidates and node groups are required, affecting the leak location search.

An alternative approach, which avoids the ill-posed inverse problem, directly compares the residuals
with the pressure sensitivities for different leak locations (Casillas et al., 2013). Although this approach
based on the sensitivities is limited to single leak scenarios, it has shown promising results in real appli-
cations (Pérez et al., 2011; Pérez et al., 2014).

The pressure sensitivity matrix, S, expresses how sensitive the pressure at each node is to a leak
occurring at any other node (even at the same node). Thus, the element s;; that relates the leak flow rate

qf at the i-th node with the pressure P; at the j-th node is defined as 9% o that
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where N is the number of nodes in the network and s; is the vector of sensitivities to the leak at the i-th
node.! To locate the leak, each sensitivity vector s; is compared with the residual vector at each time.
The residual vector, r, is defined by

r =[P — PP P, — P} . Py— PiM], (6.2)

where Pjnom indicates the nominal leak-free pressure at the j-th node, which is estimated by simulation
using a hydraulic model of the network.

In practice, it is only necessary to compute the pressure sensitivity in the nodes with sensors because
only the columns corresponding to the sensed nodes are retained. Similarly, only the residual components
of the sensed nodes are calculated. On the other hand, given the difficulty of analytically calculating the
partial derivatives in (6.1), the sensitivities are estimated numerically by increasing the leak flow rate
from 0 to a given value Q' and measuring (by simulation) the corresponding increase in node pressures:

OP, AP

=20 A 6.3
Sij 2 =0 (6.3)

One way to use the sensitivity matrix is to binarize it by setting a sensitivity threshold so that each
sensitivity vector becomes a string of ones and zeros (Pérez et al., 2009, 2011). These binary strings
constitute leak signatures and will be compared with the residual vector for matching. The residual
vector is binarized in a similar way to the sensitivity matrix (6.1). If there is no exact match between
the binary signature of a node and the binarized residual, the node with signature that has the highest
number of bits matching the binarized residual is taken as the estimated position of the leak.

! Some authors use the transpose of the sensitivity matrix defined in (6.1) and the residual vector as a column vector.
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Another proposal for locating leaks is through the statistical correlation of the actual residual with the
vectors of the sensitivity matrix (Pérez et al., 2014):

(I‘—f) (Si —S_i)T
Vio-n =0T s-5)6-5)"

where the overline ~ indicates the arithmetic means of the vector components. In this method, the sensi-
tivity matrix is not binarized. Equation (6.4) aims to measure the similarity between the residual vector
and the sensitivity vector of each leak node. The leak is assumed to be located at the node with sensitiv-
ity vector that has the highest correlation (closest to 1) with the residual vector. Framing it in machine
learning methods, the proposal of Pérez et al. (2014) is about a 1-NN classifier with correlation distance.

A variant of the previous method was presented by Casillas et al. (2014), where the similarity is
not measured with a correlation but through the angular closeness between the residual vector and the
sensitivity vectors. The angle between r and s; is given by

o; = arccos (i> , (6.5)

[ s

corr(r,s;) = ; (6.4)

where - denotes the inner product between vectors. The authors also proposed repeatedly calculating
the angles along a time horizon (e.g., one day) to obtain an average angle. Finally, the leak estimated
position is the node whose sensitivity vector has the smallest average angle. Framing it in machine
learning methods, the proposal of Casillas et al. (2014) is about a 1-NN classifier with cosine distance.

An improvement in leak localization based on pressure residuals was presented by Casillas et al.
(2015). They propose the residual vector projection towards a space of lower dimension (called leak
signature space) in which the projections are less dependent on the leak magnitude and depend mainly
on its location. The reduction in the residual space dimensionality is achieved by forcing one component
of the residual vector to always be unitary. To locate the leak given a pressure residual, look for the
smallest Euclidean distance between the actual projected residual and the leak signatures in the new
space. Each leak signature is obtained by averaging the corresponding node’s leak signatures. In terms
of machine learning methods, the proposal of Casillas et al. (2015) is about an Euclidean 1-NN classifier
with transformed residuals as features.

The correlation (6.4) and the angle between residuals (6.5) are the basis for discussing leak localization
methods using classifiers in this chapter. Before addressing the problem of locating leaks using classi-
fiers, the metrics used to evaluate the performance of different classifiers (or classifiers with different
parameterization) will be presented.

6.3 Case studies

This section describes two water distribution networks used as case studies. The first case is a simple
Hanoi network model, a network with few nodes widely used as a benchmark to evaluate various leak
localization methods reported in the literature. Because of its small size, leak localization techniques
can be comprehensively tested on this network. The second case is a Madrid network sector, a district
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metered area (DMA), where leakage flow, node pressures, and inlet flow measurements were performed
to test leak localization algorithms in real operating environments.

The Hanoi network model is composed of one reservoir, 31 junction nodes, and 34 pipes with a total
length of 38.61 km organized in 3 loops, as shown in Fig. 6.1(a). No pumping facilities are considered
since only a single fixed-head source (node number 32) at an elevation of 100 m is available. The Hanoi
system was first presented by Fujiwara and Khang (1990) and is based on the planned trunk network of
Hanoi, Vietnam. The data sets generated by simulation for this work consider leaks at all junction nodes
with flow rates from 1 to 80 I/s, in addition to the leak-free nominal conditions.
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Fig. 6.1: The Hanoi network

Because the Hanoi network model as published by Fujiwara and Khang (1990) does not include de-
mand patterns of user consumption, a demand pattern of the Madrid DMA (described below) was used to
modulate the base demand. At each time, the demand at the consumption nodes adjusts proportionally to
the increase in the inflow, with variation throughout the day that is expressed by a multiplier coefficient.
The flow profile used for the Hanoi network is shown in Fig. 6.1(b).

Synthetic data were obtained from the Hanoi network model using EPANET (Rossman et al., 2020;
Eliades et al., 2016), which are node pressures of different leakage scenarios and at different times. The
pressure data set contains a hypermatrix P € R?*31x1530 that captures the time variation of the node
over the 24 hours of a day. One column is used for each node pressure, as shown in Fig. 6.2. The third
dimension (depth) is used for the different leak scenarios. Each leak scenario refers to a combination of
leak node and leak size. There are 1550 leak scenarios because 31 different leak nodes are combined
with 50 different leak sizes (from 1 to 50 1/s). The data set also includes a vector y € R1550 containing
the leak location for each scenario to be used in the classifier training. Additionally, the data set contains
a pressured matrix P(?) € R243! with the information of the time variations of the node pressures under
nominal leak-free conditions. The matrix P(*) must be subtracted from each plane in P to obtain the
pressure residuals used as features in leak classification.

The data obtained from simulations with the Hanoi network model are ideal since they consider a
deterministic node demand without measurement noise. Therefore, Gaussian white noise is added to the
simulated measurements under different levels. The added noise is specified by the signal-to-noise ratio
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Fig. 6.2: Arrangement of the pressure hyper-matrix in the Hanoi data set

(SNR), which represents the size of the magnitude of the valid signal relative to the magnitude of the
measurement noise, as defined by Box (1988):

SNR dB = 20 log(signal /noise) . (6.6)

The second case study is a DMA in the Madrid network formed by one reservoir and 312 junction
nodes connected by 14224 m of pipe with diameters between 80 mm and 350 mm. The layout of this
network is shown in Fig. 6.3, where the green square represents the reservoir, the 10 red circles represent
installed pressure sensors, and the blue star indicates the leak node used in the tests. The mean pressure
head is about 55 m, and the maximum pressure head available at the reservoir is about 58 m. Nevertheless,
it varies throughout the day and is monitored by a sensor.
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Fig. 6.3: DMA in the Madrid network

Figure 6.3(b) shows the inlet flow and supply pressure of the network monitored during three days of
operation, including a leak on the third day. The leak event is simulated by opening a fire hydrant at node
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number 272. Figure 6.3(b) shows that generally, the supply pressure decreases when the consumption in

the network increases.
The demand profile used to model user consumption on the Hanoi network was obtained from this

DMA by averaging the network inflow over 10 consecutive days.

6.4 Performance metrics in leak localization

This section describes three indicators used in this work to quantify the performance of leak localization
systems: confusion matrix, accuracy, and topological distance.

6.4.1 Confusion matrix

The confusion matrix is an instrument used in classification and pattern recognition to evaluate a classi-
fier’s ability to distinguish different classes or conditions of a system. This is why it is frequently used
in FDI (fault detection and isolation) to assess a system/algorithm’s ability to detect and isolate faults. In
a classification problem with N classes, the confusion matrix is a N x N square integer matrix C = [¢;j],
where ¢;; contains the number of samples from the i-th class that are misclassified into the j-th class.

In leak localization, if each leak is associated with the closest node in the network, the rows of C
represent the “true node” where the leak occurs (the node closest to the leak), while the columns of
C represent the “predicted node” where leaks are located. Usually, it is represented by y the true leak
node and by y the predicted leak node (Fig. 6.4). Since the correct node (row) and the predicted node
(column) should match in each test, ideally the confusion matrix should be diagonal. Nonzero items off

the diagonal represent misclassifications.
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Fig. 6.4: Confusion matrix for leak localization
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6.4.2 Classification accuracy

Although the confusion matrix provides a comprehensive summary of the classifier’s ability to discrim-
inate between leaks at different nodes, it is sometimes more convenient to summarize the overall perfor-
mance in a single measure without detailing the separation between different leak classes. For this, the
classification accuracy can be used, which is defined as the fraction of correctly classified samples in the
classifier testing. In terms of the confusion matrix C = [¢;;], the accuracy (Acc) is obtained by dividing
the sum of the elements on the main diagonal (the trace of C) by the sum of all the elements:

YN ci

N vN .-
i1 X j—1Cij

A value Acc = 1 indicates a perfect classifier performance, although in practice the accuracy is only
close to 1 in the best cases. The proximity to 1, however, is only a good performance indicator when
the test data set is balanced in the number of samples for each class. In leak localization tests, where
classifiers are trained and tested on synthetic data, the simulations are programmed to equal the number
of samples for each class (leak node).

In order to optimize leak localization, the performance of localization algorithms is often expressed in
terms of classification error (classification loss), which is complementary to accuracy:

Acc = (6.7)

Loss =1— Acc. (6.8)

A cross-validation strategy is also used to assess leak localization using classifiers in this work. The
cross-validation procedure consists of partitioning the training data set into K groups and iterating K
times, taking one of them as a test set and the rest as the training set. At each iteration, a classification
loss is calculated; at the end, all losses are averaged to obtain a robust measure of performance called
K-fold loss.

A limitation of the accuracy and the classification loss as performance metrics in leak localization is
that they only consider the number of errors when locating leaks but not the magnitude of these errors.
The following metric is intended to evaluate the performance of leak localization methods in a more
comprehensive way.

6.4.3 Topological distance

The topological distance between two nodes is the number of links in the shortest path connecting them.
Formally, a hydraulic network is a graph composed of a set of nodes .4 = {N;} and a set of links
£ = {Ly}, where each link (pipe) connects a pair of nodes. For any two nodes, i and j, the topological
distance between them is denoted by d;;. If the shortest path between this pair of nodes is represented by
the link subset &;; C .Z, then

dij = | 2] (6.9)

where |- | indicates cardinality.
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In Definition (6.9), all links in the shortest path are equally valued; no link is considered more signifi-
cant than another. It is also possible to define a length-weighted topological distance where the length of
the pipe in each link of the shortest path is considered:

dij= Y length(Ly), (6.10)
Lie =@ij

where length(Ly) is the length (m) of the k-th link. Considering all the different pairs of nodes in a
network, the topological distances are organized in a matrix. Since d;; = dj;, D = [d;;] is a symmetric
matrix. Furthermore, it has a null diagonal since d;; = 0.

The topological distance between nodes is a metric for the leak localization error, using d;; to quantify
the error when a leak at node i is located at node j. It is also used as a cost function for hyperparameter
optimization in training a classifier for leak localization. A series of data is frequently tested considering
different leak scenarios, varying the leak location and magnitude. For each entry in the data set, a pre-
dicted leak node, y, is obtained and compared against the real leak node, y. A metric that summarizes
the overall performance of the localization method on the test data is the average topological distance
(ATD)

XiXcijdij
Y)Y jCij ’
where [c;;] is the confusion matrix described in Subsection 6.4.1.

Ideally, in the best case of leak localization, both ATD and classification loss should be 0, whereas the
accuracy should tend to 1.

The topological distance between a pair of nodes can be obtained, among other methods, by Bread-
First computation (Akiba et al., 2013) when all the links are treated with unit weight or by the Dijkstra
algorithm (Dijkstra, 1959) when the pipe lengths are used to weigh the links.

ATD = (6.11)

6.5 Classification method based on Bayesian decision

Leak localization is presented in this work as a multiclass classification problem using supervised learn-
ing. The proposed classifiers can be framed within Bayes’ decision theory and computed using proba-
bilities. In this framework, the creation and tuning consist of proper probability density functions from
training data. The Bayesian decision process is summarized below.

Let us consider a classification problem with J classes, determined by feature vectors X = [xj,...,x,]
representing observations of n features. The classifier response is a class label denoted by y, so y; means
that a given data sample belongs to the j-th class. To classify an observation X, the posterior probability
P(y;|x) must be estimated, which is the probability that the given observation belongs to the class y;. It
makes sense to assign an observation to the class with the highest posterior probability. Therefore, a way
to estimate or fit these probabilities is required. Using the Bayes’ theorem, the posterior probability can
be computed as follows:

P(y;) P(x|y;)

O (6.12)

P(yjlx) =

where
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J
P(x) =) P(y;)P(x|y)) (6.13)
j=1

is a common denominator for all classes and is called evidence. The factors P(y;) and P(x|y;) in the
above equations are the prior probability and class-conditional probability of class y;, respectively. To
distinguish between the concepts of prior and posterior probabilities, the rest of this section will use Py(-)
for prior and ﬁ() for posterior.

When there is no prior knowledge about the frequency of occurrence of each class, the prior probabil-
ities Py(y;) of each class can be assigned uniformly assuming that the cardinality of the classes is J and
all members are equally probable:

1 1

Py(yj) = == 6.14
b)) number of classes J’ (©.14)
or it can be calculated empirically from the relative frequency of the class in the training set
number of samples in the j-th class
Ro(yy) = i / (6.15)

total number of samples

Once the prior probabilities and the class-conditional probabilities have been calculated, the predicted
class is determined by the rule below.

Bayes decision rule

Given a feature vector X, assign it to class y; if
P(y;|x) > P(yi|x); i=12,....5;i#]. (6.16)
This means that the predicted class, denoted by y(x), is given by

3(x) = argmax P(y; |x), (6.17)
J

which is also called the MAP (maximum a posteriori) decision rule.

In a diagnosis application, not all misclassifications have the same impact in the context of the prob-
lem. If some classification errors need to be weighted more than others, then the classification output can
be computed by minimizing the expected classification cost,

J
y(x) :ar%minZP(yj]x)Fij, (6.18)
i=1,...J j=1

where I;; is the cost of classifying an observation as class y; when its true class is y;. The simplest way
to assign the cost of misclassification is

0 il
=4 07 (6.19)
1 if i,
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where all misclassifications are penalized equally; however, sometimes it is reasonable to use penalties
other than 1. In applications for locating water leaks, where the classes are associated with the leak
positions within the network, it is reasonable to increase the misclassification cost as the distance between
the real leak position and the position predicted by the classifier.

All classification techniques used in this work can be framed within Bayes’ decision theory, although
they differ in estimating the class conditional probabilities. These techniques are naive Bayes classifica-
tion, discriminant analysis, k-nearest neighbors (k-NN), and decision trees.

Naive Bayes classification and discriminant analysis compute the likelihood using Gaussian distri-
butions. Classification by discriminant analysis assumes multivariate normal distributions for class-
conditional probability densities, so the data are modeled using a Gaussian mixture distribution. Con-
versely, naive Bayes classification assumes that each feature x; is independent of the other features, so
the joint probability P(x|y;) can be expressed from the product of the conditional probabilities of each
feature individually.

In naive Bayesian classification and discriminant analysis, the distribution parameters (mean and vari-
ance/covariance) are estimated from the training data, so they are parametric classification methods.
Furthermore, the classification by decision trees and k-NN is based on non-parametric models. The sim-
ilarities/differences and the implementation details of each of these methods can be found in Martinez
and Martinez (2015).

The Bayesian decision approach described in this section will be used both to estimate the leak location
at a specific time point (Sections 6.7 and 6.8) and also to propagate the probability of leak occurrence
between different time points (Section 6.9). The features x; are obtained from the pressures in the nodes
equipped with sensors, and the class labels y; correspond to the leaky nodes.

Before describing the leak localization using classifiers, methods based on the sensitivity matrix are
introduced since these have motivated the proposal.

6.6 Leak localization using the sensitivity matrix

Leaks in a network are manifested as pressure losses in the nodes. Therefore, the differences between
the pressures before and after a leak event, the residuals, provide information for diagnosing the event.
Leaks in the network, however, do not affect all nodes equally since the proportion in which the pressure
residual of each node varies depends on the magnitude of the residual and its location.

From now on, matrices will be used to relate the leak position with the position of the pressure sensor
where the residuals are computed. The leak node and the sensor node will be called i (row) and j (col-
umn), respectively. The matrix [s;;] = dP;/dg;, as defined in (6.1), summarizes the pressure sensitivity
at the j-th node to leakage at the i-th node. The heat map in Fig. 6.5 shows the sensitivity of all node
pressures to leakage at each node in the Hanoi network using colors from white (lower sensitivity) to
black (higher sensitivity), passing through yellow and red hues. It can be seen that nodes 21, 27, 28,
29, and 12 have high sensitivities, whereas node 1 has very low sensitivity. Furthermore, each node’s
pressure is more sensitive to leaks located at the same node. Therefore, the values on the matrix diagonal
are dominant.
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The sensitivity matrix, calculated by simulation, characterizes the influence of each possible leak on
different node pressures. Thus, when a leak has already been detected, its location can be estimated
by comparing the actual pressure residuals’ similarity to the sensitivity vectors for each potential leaky
node.

In order to measure the similarity between the residual vector and the sensitivity vectors, their Eu-
clidean distance, their correlation, and the angle between them can be used. The Euclidean distance
depends greatly on the magnitude of the leak and little on its location, so its use for leak localization
requires that the residuals be mapped to a vector space where the magnitude dependence is minimized.
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Fig. 6.5: Sensitivity matrix of Hanoi network

A similarity measure (between residuals and sensitivity vectors) little affected by the leak’s magnitude
is correlated. With this measure, the predicted leak node is the one with sensitivity vector s; that has the
highest correlation with the actual residual r:

y(r) = argmax corr(s;,r). (6.20)
i€l2,...n

Since there is uncertainty in the leak node prediction, a list containing K nodes (K > 1) with the
highest correlations in (6.20) can be considered to mark a ’hotspot” of the leak in the network.

Another way to estimate the leak location is by computing the angle between the residual vector r and
each of the sensitivity vectors s;. The node i with the minimum angle between s; and r is assumed as a
leak node. In practice, it is not necessary to compute the angle ; between s; and r but only the cosine
of this angle. The node for which the cosine is maximum is assumed as the leak node (an angle is a
minimum if its cosine iS maximum):

N . r-s;
y(r) = argmin o; = argmax cos( ;) = argmax : (6.21)

i€l2,...n i€l2,...n i€l2,...n ]| [|s: ]| '
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A list containing K nodes (K > 1) with the highest cosines in (6.21) are considered to mark a hotspot
for the tested leak.

Figure 6.6 shows the results of locating a leak in the Hanoi network using both methods: maximum
correlation and minimum angle. As can be seen, the maximum correlation method does not locate the
exact node of the leak but estimates a consistent hotspot. In contrast, the minimum angle method locates
the exact leak node but estimates a more dispersed hotspot. A sensitivity matrix with Ag = 25 1/s was
used. For the localization test, a leakage of 18 1/s was simulated at node 15 and noise of SNR = 60 dB
added to the pressure sensors at nodes 12, 21, and 27.
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Predicted node
Hotspot

e 1O%

e1O%

(a) Prediction by maximum correlation (b) Prediction by minimum angle

Fig. 6.6: Leak locations obtained by maximum correlation and minimum angle in the Hanoi network

The maximum correlation and minimum angle methods have a common characteristic: they find the
training sample with the most significant similarity (the minimum correlation/cosine distance). A leak
localization method using k-NN classifiers is considered in the next section to generalize this approach
to other distance metrics.

6.7 Leak localization using k-NN with hyper-parameter optimization

The k-NN (k-Nearest Neighbors) method classifies test data by taking the most frequent class among
the k feature vectors most similar to the test data within the training set. In the simplest form of k-NN,
where k = 1, only the sample from the training set that is closest to the test sample (nearest neighbor in
feature space) is used. The test sample is then assumed to belong to the same class as the nearest training
sample. Different distance metrics can measure the similarity between two feature vectors, including the
well-known Euclidean distance.

The measure used to quantify the nearness between points significantly influences the k-NN classifier’s
performance. Although Euclidean distance is the most common way to measure dissimilarity between
data, it is also possible to use other dissimilarity measures that express other types of distance between
points in feature space. Some frequently used distance metrics are listed in Table 6.1, where x and x’ are
assumed to be feature vectors in R".
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Table 6.1: Distance metrics in k-NN classification

Distance name Definition

Euclidean distance d(x,x') = \/ (x—x)T(x—x/)
Mahalanobis distance d(x,x') = \/(x —x/)TSI(x—x)
Manhattan (city block) distance d(x,x') =Y |xi — x|
Chebyshev distance d(x,x’) = max; |x; — x}|
Minkowski distance d(x,x") = (X8 |xi —x}|P 1p
Correlation distance d(x,x') =1—corr(x,x)
Cosine distance d(x,x') =1 —cos(x,x)

The Manhattan, Euclidean, and Chebyshev distances in Table 6.1 are special cases of the Minkowski
distance for values p = 1, p = 2, and p = oo, respectively. The matrix S on the Mahalanobis distance is
the data covariance (De Maesschalck et al., 2000). On the other hand, corr(x,x’) is the Pearson’s linear
correlation between x and X/, treated as sequences of values, and cos(x,x’ ) denotes the cosine of the
angle between the x and x’ vectors in the n-dimensional feature space, as defined in (6.5). A cosine value
of 0 means that the two vectors are orthogonal and have no match. The closer the cosine value is to 1,
the smaller the angle and the greater the match between vectors.

Fine-tuning a k-NN classifier should include determining the most appropriate distance metric for the
problem and determining the number of neighbors (k) to consider. The distance metric and the number
of neighbors are known as k-NN hyperparameters.

The performance of a k-NN classifier depends on the number of nearest neighbors to use. Small values
of k tend to produce an overfitted classifier that is very sensitive to measurement noise in features. In
general, k-NN considers a higher number of neighbors, £k > 1, which allows a more robust classification
(less sensitive to outliers and measurement noise).

The general idea of leak localization using classifiers is to fit a predictive model that estimates the leak
node location (class label) based on a set of node pressures (features) measurements. Next, leak location
is explored in this section using k-NN as the first classification method. Unlike the methods described
in the previous section, the k-NN classification generalizes the leaky node search by considering any
number of nodes with similar leaks and for any distance metric.

From the Hanoi network pressure data set, where leaks of different flow rates are considered in each
node of the network, k-NN classifiers were trained considering two different sets of features. In the
first set, the pressures measured at the nodes were used directly, whereas in the second set the pressure
residuals were used. For each set of features, the effect of varying the number of neighbors has been
analyzed as well as the distance metric used to measure the nearness between neighbors. The results
presented in this section were obtained assuming pressure sensors placed in nodes 12, 21, and 27. The
procedure to train and test the k&-NN classifier on the Hanoi network is described in the following box.
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Training and testing k-NN on the Hanoi network

1. Build the pressure matrix P = [Py, P>, P»7], containing one column for each sensor and one
row for each leak scenario. In addition, create a vector y with class labels (leak nodes) con-
taining one element for each row of P. The matrix R = P — Py must also be computed when
pressure residuals are used as features.

2. Divide the data (P, R and y) into two groups; one for training and the other for testing. For train-
ing, the samples corresponding to leakage flow g, = 2,4,...,50 /s are used, whereas for testing
the samples corresponding to leakage flow g, = 1,3, ...,49 /s are used. In cross-validation tests,
the entire data set is taken for training, and testing is performed on the validation subset in each
iteration.

3. Train the k-NN classifier using Py, or Ry, depending on the set of features to be used. A
distance metric and a number of neighbors must be specified.

4. Test the trained classifier using the testing data Py or R Predicted leak nodes are stored in
a vector y to later evaluate the classifier performance.

5. Compute the classification loss (error) and the confusion matrix.

In order to find the best hyperparameters (the best combination of distance and number of neighbors)
of the k-NN classifier, the classification error, as defined in (6.8), was calculated for each combination of
distance and number of neighbors from k = 1 to k = 50. For each combination, a 5-fold cross-validation
was applied so that the K-fold loss is used as an error metric. The K-fold loss is obtained by averaging the
losses obtained on each fold. The K-fold loss for each combination of distance and number of neighbors
is shown in Fig. 6.7. The definition of each distance metric was presented in Section 6.5.

K-fold loss

Fig. 6.7: Hyperparameter optimization in k-NN classifier for leak localization
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Figure 6.7 shows that the best performance (the lowest classification error) is obtained using the co-
sine distance, followed by the correlation distance. Regarding the number of neighbors, the slightest
classification error is obtained for 4 and 5 neighbors (k = 4 was selected for simplicity). Because the
variation in the classification error for a different number of neighbors is barely perceptible in Fig. 6.7
for the cosine distance, this variation has been plotted separately in Fig. 6.8. This figure shows that as
the number of neighbors approaches 50, the classification error increases because the data set used only
contains 50 samples for each leak class.

0.015

K-fold loss

0.005

1 10 20 30 40 50
Number of nearest neighbors, k

Fig. 6.8: Leak localization error using k-NN for different number of neighbors

Performance tests were applied to the k-NN classifier considering Gaussian noise in the measured
pressures. The lowest classification error, obtained in noise-free conditions (SNR = o0), was 0.4916
when using pressures as features, whereas it was 0.0039 when using residuals. The results plotted in
Fig. 6.9 show that around 60 decibels a cut-off point is detected in the error curve where the effect of
noise increases considerably. k-NN is inferior when using the measured pressures as features since almost
half of the samples are wrongly classified even without noise. The use of pressure residuals (orange line)
instead of raw pressures (blue line) significantly reduces leak classification error. The confusion matrices
in Fig. 6.10 show an improvement in leak localization when pressure residuals are used instead of raw
pressures.

From the results obtained in this section, it can be concluded that pressure residuals are an excellent
option as features to classify leaks by their location. Furthermore, it was found that the best way to
measure the similarity between residual pressure samples is by utilizing the cosine distance. It is also
important to emphasize that when locating leaks using k-NN several neighbors greater than one must be
considered according to the pressure measurements amount of noise.

6.8 Feature transformation in classifier-based leak localization

The previous section shown that the cosine distance, determined by the angle between residuals, is a good
measure of similarity to classify leaks. This means that the leaks present a characteristic directionality (in
the residuals space) according to the node where they occur. This section proposes a transformation on
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Fig. 6.9: Dependence of the classification error on the signal-to-noise ratio for k-NN with 4 nearest
neighbors

the residuals to extract the information about their direction in a set of descriptors used as new features
for the classifier. As shown at the end of the section, this transformation extends the concept of cosine
distance used in any classifier, not just the k-NN.

According to the literature review, leak localization methods formulated as multiclass classification
problems use pressure values or pressure residuals as features under a machine learning approach. An
exploratory analysis of the residuals suggests that leaks at the same node tend to show a characteristic
direction; see Fig. 6.11. This is a fundamental hypothesis in model-based leak localization methods based
on sensitivity matrices (Pérez et al., 2011). Although in Fig. 6.11 it appears that the residuals of all the
leaks at a specific node follow a constant direction, the direction of the residual vector can vary if an
extensive range of leakage magnitudes is considered.

Traditional classifiers for leak localization use residual vectors in the Cartesian form where the resid-
ual magnitude and direction are implicitly combined. This does not facilitate the classification of leaks
since the residual vector magnitude does not provide information on its direction. Therefore, to improve
classifiers’ performance for leak localization, it is proposed to map the features into a new subspace
capturing only the information on the direction of the leaks and discarding the information on their
magnitude.

According to vector analysis, vectors can also be expressed in a form where information about mag-
nitude and direction is decoupled (Young, 2017). Thus, for any residual vector r = [r{,r2,...,rs|, the
decoupled expression is

r =M |cos0;,c086,,...,cos05] =M]ci,ca,...,c5], (6.22)

where M is a scalar, and

k= filr1,r2, .. rs) = Tk , fork=1,2,...,8 (6.23)
VAR
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Fig. 6.10: Confusion matrices for k-NN leak localization from noisy pressures with an SNR of 60 dB



6 Leak localization in water distribution networks using machine learning based on cosine features 137

r, [m]

-4 -2

r. [m -6 -4
2[ ]

r, [m]

Fig. 6.11: Leaks at different nodes plotted on the residual subspace. A single color is used for each leak
node, although some colors are repeated.

are the so-called direction cosines that uniquely describe the direction of the residual vector r in the
S-dimensional subspace. The vector ¢ = [c1,¢2,...,cs] can be used as a new feature vector instead of the
residual vector r.

The training procedure and the predictive use of classifiers to locate leaks have been previously de-
scribed by Ferrandez-Gamot et al. (2015). The modification proposed consists of using a new set of
features. As shown later, replacing the original features r; with the new features c; improves classifiers’
performance for leak localization, increasing class separability. In the diagram in Fig. 6.12, the gray box
shows where the feature transformation is applied to improve the classifier’s performance in the leak
localization process.

) ( N
PO, PO ..., P r G
Nonlinear mapping
© |2 Cy Multiclass
e = Pk — Pk - _ Tk .
P,,P,,...,Pg : GTE classifier
I's - P AP g Ar oo AP ing Cs
Pressures Residuals L ) Cosines
——

Fig. 6.12: Feature transformation to improve the classifier performance for leak localization

The proposed feature transformation can be seen as an ad hoc transformation because the original fea-
tures are projected into another vector space through a nonlinear transformation. This proposal, however,
does not increase the space dimension as it usually happens when the “kernel trick” (Koutroumbas and
Theodoridis, 2008) is applied.

The use of direction cosines as classifiers is also related to the use of the cosine distance in k-NN.
However, in k-NN, the angular proximity is measured between pairs of samples. In contrast, the di-
rection cosines can be computed for individual samples without an additional reference sample since
[c1,¢2,...,cs] measures the angular closeness of that sample concerning the implicit coordinate axes.

A series of tests verified the improvement in leak localization by using direction cosines instead of
unprocessed residuals. In order to quantify the improvement obtained, the following percentage improve-
ment was used
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1% := 100M,
LI‘ES

where Ly is the classification loss (i.e., the leak localization error) obtained using residual features, and
Los 1s the classification loss when using cosine features. In leak localization tests in the Hanoi network,
using the data set described in Section 6.3 (sensors at nodes 12, 21, and 27), the classification loss
using k-NN decreased by 99.3% when cosines were used, relative to when residuals are used directly as
features. Using the naive Bayes, decision tree, and linear discriminant classifiers, the classification loss
was reduced by 99.7%, 99.6%, and 97.0%, respectively, using the percentage improvement (6.24).

The lower classification loss obtained when cosines are used as features leads to better class separabil-
ity. Therefore, with the four classifiers tested, the cosines better captured the directionality of the leaks in
the residual subspace. This is shown in Fig. 6.13, where it is found that the class regions (where the class
is detected) for three leak classes in the Hanoi network using cosine features were better defined than
those for untransformed residual features. As shown in Fig. 6.13, using cosine features, the leak local-
ization problem becomes almost independent of the classifier used since the class regions are similar for
different classifiers. In fact, with cosine features, the classification loss (and consequently the accuracy)
differs by less than 1% in the classifiers tested.

In order to analyze the robustness of the classifiers fed by cosine features, leak localization tests
were performed considering measurement noise in node pressures. The results in Table 6.2 show that
the percentage improvement when using the cosine features concerning the residual features is more
significant than 50% for a wide noise margin. The percentage improvement decreases as the noise ratio in
the signal increases because when the noise is considerably high (SNR < 40 decibel), the fake direction
captured by the cosines become irrelevant to locate the leak. In the worst case, however, the improvement
percentages remain close to 0, which means that cosine features are not decreasing in performance.

(6.24)

Table 6.2: Percentage improvement in performance of classifiers using cosine features

Classification method SNR

' 80dB 60dB 40dB 20dB 0dB¥
k-Nearest Neighbors 0.993 0.873 0.394 0.006 0.013 0.005
Naive Bayes 0.997 0.939 0.405 0.009 -0.003 0.003
Decision Tree 0.996 0.917 0.473 0.021 -0.018 -0.007

Linear Discriminant Analysis 0.970 0.929 0.550 0.016 -0.040 -0.018

" Noise-free measurements

* Noise and signal have the same magnitude

To assess the overall performance of cosine-based classifiers in leak localization, the average topo-
logical distance (ATD) was calculated, as defined in (6.11). The results are presented on the left side of
Table 6.3 for noise-free measurements, confirming the best performance when using the cosine features.
By using noisy measurements, the ATD increases as the table on the right side of Table 6.3 shows, but
its variation is consistent with the increase in the classification error.
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139

Fig. 6.13: Comparison of decision boundaries for different classifiers with residual and cosine features
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Table 6.3: Average topological distance using different feature sets

Noise-free measurements Noisy measurements, SNR = 60 dB

Classification method Features Classification method Features

Residuals Cosines Residuals Cosines
k-Nearest Neighbors ' 0.6555 0.0026 k-Nearest Neighbors ' 0.9523 0.5948
Naive Bayes 2.4090 0.0026 Naive Bayes 24387 0.9742
Decision Tree 1.3239 0.0026 Decision Tree 1.3935 0.7303
Linear Discriminant Analysis 2.1974  0.0232 Linear Discriminant Analysis 2.2090 0.7432

T Buclidean distance, k = 5 ' Euclidean distance, k = 5

The quadratic discriminant analysis (QDA) classifier (not included in previous tables) deserves a sep-
arate mention in the comparative analysis of classifiers. Among the classifiers tested, this is the only one
that produces good results in locating leaks using pressures without computing residuals. When residu-
als or cosines derived from them, however, are not used, this classifier is more sensitive to the operating
point (user consumption, time of day). Therefore, its use in leak localization may require several classi-
fiers fitted with different training sets as the operating point changes. This implies a bank of classifiers,
a classifier for each hour of the day or each user consumption range.

Figure 6.14 shows the error in leak localization obtained with this classifier for different signal-to-
noise ratios in the measured pressures, considering a specific time of day. This classifier’s characteristic
is that it showed better performance when trained from pressure measurements with added noise; see
right side of Fig. 6.14. This can be explained because when the QDA classifier is trained with clean data,
the class probability densities are fitted to a tiny region.

1 T T T T T T T T 1 T T T T T T T T
I Features: Pressures I Features: Pressures
I Features: Residuals [N Features: Residuals
0.8 [ IFeatures: Cosines 1 0.8 - [ IFeatures: Cosines
0.6 5 0.6
w w
%] w
3] )
= 2
04 r . 04r
0.2 I - 0-2 |-
0
00 100 90 80 70 60 50 40 00 100 90 80 70 60 50 40
SNR [dB] SNR [dB]
(a) Trained with noise-free data (b) Trained with noisy data

Fig. 6.14: Classification loss in QDA-based leak localization
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6.9 Leak localization over a time interval

Since a leak is not immediately located when it appears, a time interval 7 with measurements from
pressure sensors is available. In this case, the features and responses are available as a time series. A
refined output at a specific sample time ¢ can be obtained, considering the class predicted during the
previous interval [t —T,...,t — 1,t]. One way to refine the output is to train different classifiers for each
hour of the day and predict the leak node using the one corresponding to the time of measurements. The
final output (the most likely leak node) is then calculated by majority vote:

y:(x) =mode(y¢(x)), T=t—-T,...,t—1,1, (6.25)

where mode(-) indicates the highest frequency class. In this way, the most predicted leak node is selected
over the available time interval.

Figure 6.15 shows the result of an LDA leak localization test on the Hanoi network over a full day
in 1-hour increments (t = 1,2,...,24). The true leak node is number 8, and the output obtained by
majority vote is number 9, although, at different times of the day the predicted node varies within the set
{5,7,8,9,10}.
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(a) Predicted node over time (b) Class frequencies

Fig. 6.15: Leak node prediction by majority vote over time

Another strategy to refine the output is, by considering the Bayesian inference described in Section 6.5,
to take the posterior class probabilities at each sample time as prior probabilities for the next sample
time. In this way, the prior and posterior probabilities are updated at each time step (with each new
measurement) as

~ P_1(yi|xX)P(X|y;

By x) = 2 1(y11|3())() (x]y))
except at the initial time since there is still no posterior probability calculated. Therefore, the first prior
probability is assigned as indicated in equations (6.14) and (6.15).

Figure 6.16 shows the results of the LDA leak localization test with the same test data as in Fig. 6.15
but by applying Bayesian inference over time. It can be noted that with this method the predicted node
converges to the correct leak node and shows greater consistency (less variability) than the simple ma-
jority vote.

(6.26)
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Fig. 6.16: Leak node prediction by Bayesian inference over time

It may be necessary to limit the probabilities to an interval [0, 1 — €], where € is a small number during
the probability propagation over time. This prevents, when an estimated posterior probability is 1 at some
sample time ¢, that the remaining probabilities are always 0 for subsequent time steps ¢ > fg.

6.10 Integrated leak localization method

The integrated procedure to locate leaks in water distribution networks, considering what has been de-
scribed in previous sections, is shown in the following box. The workflow is the same for different
classification methods and different feature sets.

Leak localization using classifiers

1. (Data collection) Using the network’s hydraulic model, simulate different leakage scenarios,

considering different leak flow rates and different leaky nodes. A nominal leak-free scenario
should be simulated. EPANET software can be used in this step.
From the simulation results, construct a pressure matrix, P, containing the node pressures ar-
ranged by columns so that each row of this matrix represents a different leakage scenario. A
matrix P(?) (same size as P) must also be constructed containing the leak-free node pressures.
Additionally, a vector y must be constructed, which has a length equal to the number of rows in
P. This vector contains the class labels for the classifiers: the element y; is an integer indicating
the leak node for the leak scenario represented in the i-th row of P.

2. (Sensor placement) From the pressure matrix P, calculate an optimal sensor placement us-
ing the techniques proposed in Morales-Gonzélez et al. (2021) and Santos-Ruiz et al. (2022).
The number of sensors can be determined from a marginal analysis by progressively increasing
the number of sensors until new sensors do not significantly improve leak localization perfor-
mance. Some sensors less than the marginal number can be assigned depending on the available
equipment.

3. (Data partitioning) In matrices P and P(©), eliminate the columns that do not correspond to
sensor nodes, keeping only the columns associated with the sensor placement calculated in the
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7

. (Feature computation) Set the features for training Xain = Ptrain OF Xirain = Pirain — P

previous step. Subsequently, separate the rows of P into two subsets: one for training and one
for testing, creating the sub-matrices Py,j, and Pies. The same division is performed on PO,

Similarly, y is divided to obtain Yiain and Yiest-
(0)
train

Xirain = f (Ptrain — Pt(roa)in) , where f(-) is the cosine extractor function defined in (6.23). Similarly,
. 0 0
set the features for testing: Xiest = Prest O Xiest = Prest — P( )t or Xeest = f (Ptest — P( ) )

tes test

or

. (Classifier training) Train the selected classifier using the training data labeled {Xiain, Ytrain }-
. (Classifier testing) Test the classifier using the labeled test data {Xest, Ytest }- Store in a vector

y the leak nodes predicted for Xes. Then, evaluate the performance of the classifier from yieg
and y by using the metrics described in Section 6.4.

Steps 3 through 6 can be repeated in a cross-validation scheme. In that case, the K-fold loss is
used as a performance measure.

. (On-line prediction) Obtain new pressure measurements at the sensor nodes and compute the

features in the same way as step 4. Use the classifier trained in step 5 to predict the leak’s loca-
tion. If multiple measurements are available and covering a time interval where the network’s
operating point changes considerably, use one of the proposals from Section 6.9 (majority vote
or Bayesian inference) for the final estimate of the leak node.

The presented leak localization scheme was tested to evaluate the performance of different combi-

nations of classifier and feature set. Table 6.4 summarizes the comparison of the performance of the
different classifiers tested in the Hanoi network. In the tests, sensors were placed in three nodes (12,
21 and 27), and three different sets of features were considered: pressures, residuals and cosines. The
results highlight the general improvement introduced by using cosine features instead of residuals. In
addition, it is noted that k-NN with Euclidean distance and cosine features is equivalent to k-NN with
cosine distance and residual features. It is also highlighted that QDA generally shows better performance
than the other classifiers, except when cosine features are used, because in that case the performance of
all the classifiers is quite close.

Table 6.4: Leak classification error for different classifiers on different feature sets. Error metric: 5-fold

loss (cross-validation)

Classification Method Features

Pressures Residuals Cosines

Naive Bayes 0.82968 0.81935 0.00645
Linear Discriminant Analysis 0.75161 0.76129 0.02000
Quadratic Discriminant Analysis 0.00645 0.00516 0.00839
Euclidean k-NN 0.48710 0.49548 0.00387
Cosine k-NN 0.67355 0.00387 0.00323
Decision Tree 0.70903 0.71161 0.00387
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Using the work flow in the box above, leak localization tests were also performed in some sectors
of the Madrid network (the DMA described in Section 6.3 and other medium-sized sectors) by using
field measurements. An exhaustive analysis is not presented in these cases because the samples collected
correspond only to a single leak point. Opening valves physically simulated the leaks. In each case,
measurements were collected from 10 sensors placed in specific nodes determined by metaheuristic
optimization, such as those described in Morales-Gonzalez et al. (2021) and Santos-Ruiz et al. (2022).
Nominal leak-free node pressures were obtained by simulation with an EPANET model tuned from
measurements two days before the leak event. Figure 6.17 shows the result of the leak localization test in
the DMA of the Madrid network. In this figure, the true leak node is represented by the cyan star (+) and
the predicted leak node by the orange star (). The topological distance between the true and predicted
nodes (node number 272 and 138, respectively) is 5, corresponding to about 8 m of pipe length. The best
leak node prediction (shown in Fig. 6.17) was obtained with k-NN using correlation distance. With k-NN
using cosine distance and with other classifiers using cosine features, localization errors of about 100 m
were obtained. This may be because the directionality associated with the directing cosines is sensitive
both to noise in pressure measurements and to the accuracy of nominal pressure estimates obtained from
the model. Therefore, poor leak-free pressure estimates can lead to fake directions associated with nodes
distant from the leak node when the model is not well calibrated. In contrast, the correlation distance
appears less sensitive to model calibration and measurement bias.

Reservoir
Sensors
True leak node
Predicted leak node

X% o |

(a) Topological view (b) Close-up street view

Fig. 6.17: Leak localization in a DMA of the Madrid network using k-NN with correlation distance

In leak localization tests with synthetic data (simulations) in different sectors of the Madrid network,
the same behavior was observed: the classifiers showed a considerably higher performance using cosine
features than when they used raw residual features. In tests with physical measurements (not simula-
tions), however, the difference was not always significant, and sometimes the k-NN with correlation
distance produced better results.
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6.11 Conclusions

This work has addressed a leak localization method using classifiers with transformed pressure residuals
as features. The residuals’ proposed transformation consists of a nonlinear mapping to extract the infor-
mation about their directions, separating it from their magnitudes. The transformed features, called di-
rection cosines, significantly improve leak localization accuracy compared with untransformed residuals,
even under noisy pressure measurements. It should be noted that in predictions from real measurements
in physical networks, a well-calibrated hydraulic model must be available to estimate the leak-free nom-
inal pressures. The cosine distance and the directionality on which the cosine features are based strongly
depend on the accuracy of those estimates. In contrast, the correlation distance seems less sensitive to
model calibration and measurement bias, so using k-NN with correlation distance should be considered
when the hydraulic model is not very accurate.

Two machine learning classification techniques were not explored in depth for leak localization and are
not reported in this work: support vector machines (SVMs) and artificial neural networks (ANNs). SVMs
are binary classifiers that cannot directly address the problem of classifying multiple leak classes, so their
application involves using “one versus rest” or “one versus one” schemes, leading to a more complex
leak localization in networks with many nodes. Furthermore, SVMs are linear classifiers, so they must
be combined with kernel techniques to classify nonlinear decision boundaries. On the other hand, neural
networks are a fairly broad field with an application that usually requires deep learning techniques not
addressed in this work. In preliminary tests with SVMs and ANNSs, no better performances were achieved
than those reported with the other methods, but their exploration remains open for future work.
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