
Chapter 8

Observer-based calibration of a power-law model for head loss in
pipelines

Lizeth Torres1 and Cristina Verde1

Abstract This chapter presents a real-time approach based on a nonlinear state observer for estimat-
ing both the coefficient and the exponent of a power-law model for head loss in a pipeline. Such a
power law is nothing but a generalization of conventional models such as the Darcy-Weisbach and the
Hazen-William formulas. The interest in estimating the parameters of the power law is twofold: to avoid
handling values of physical parameters that may be uncertain, such as relative roughness, and to have
an appropriate model for computational pipeline monitoring applications, such as leak detection and
localization. The real-time estimation is performed by a state observer from the following available
information of the pipeline: a flow rate and two pressure head recordings. To demonstrate how the pro-
posed approach works, the state observer was implemented in MATLAB and experimental data from
a lab pipeline was used to feed it. In addition, numerical simulations of a leak location algorithm are
presented to show how a well-calibrated head loss model is highly necessary for leak diagnosis.

8.1 Introduction

The proper management of pipelines and fluid distribution networks requires some tasks that should be
preferably executed in real time, for example, the detection and identification of faults or the pressure
control for minimizing fluid losses (Verde and Torres, 2017; Puig et al., 2017). Usually these tasks are
performed by algorithms based on mathematical models that are formulated from physical principles. In
addition, although these algorithms have been shown to work very well in practice, they have an intrinsic
problem: they must be frequently updated because their governing equations are functions of physical
parameters that evolve over time in a slow or drastic way according to the operational and environmental
conditions. In particular, in pipelines that have been in service for a considerable time, there are two
physical parameters that notably change: the roughness and the internal diameter. Both in fact can be
related to a normalized parameter: the relative roughness.

Relative roughness varies because of the natural deterioration processes that affect the internal wall
of the pipelines such as corrosion, erosion, tuberculation or the deposit of materials. Such a variation
directly modifies the dissipation of energy between the wall and the fluid.
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The total energy dissipation in a pipeline is the sum of two hydraulic losses: the quasi-steady and
the unsteady losses (Adamkowski and Lewandowski, 2006). Several authors have tried to model the un-
steady loss, which is present in fast transients, by proposing in parallel, models that match experimental
data and methods to calibrate them. These models and the associated calibration methods, however, are
not discussed here since the unsteady loss is out of the scope of this chapter. The reader may consult the
reviews provided in Bergant et al. (2001) and Savic et al. (2009) to know more about the state-of-the-art
research on this topic.

The quasi-steady loss, which is known as head loss or pressure drop, can be divided into two main
classes: major losses, associated with energy loss caused by viscous friction in the pipeline wall, and
minor losses, associated with bends, fittings and valves. The head loss can be then expressed as follows
(White, 1999):

DH(Q) = DHf (Q)+
N

Â
i=1

DHm(Q), (8.1)

where Q is the flow rate in the pipeline, DHf (Q) denotes the major losses and
N

Â
i=1

DHm(Q) represents the

sum of the minor losses.
The conventional equations used to calculate the major losses are the Darcy-Weisbach (DW) equation

together with more empirical formulas such as the Hazen-Williams (HW) and the Manning equations,
which are power laws (Moore, 1959). The DW equation, however, is more accepted with respect to the
empirical formulas because it is dimensionally homogeneous and applicable to water as well as to other
fluids (Liou, 1998). The DW equation is expressed as follows:

DHf (Q) = f (Q)
L
f

Q2

2gA2
r
, (8.2)

where f (Q) is the dimensionless friction factor, L is the length of the pipeline, f is the pipeline diameter,
Ar is the cross-sectional area and g is the gravitational acceleration. Minor losses represent additional
energy dissipation provoked by pipeline devices that act against the fluid and reduce its energy, velocity,
or momentum.

The major and minor losses can also be simultaneously calculated with the DW equation, but the real
length L involved in the DW equation must be replaced by a equivalent length that depends on the flow
rate and characteristics of the pipeline accessories (Chapter 2, Larock et al. (1999)).

As it can be seen, the DW equation is a function of the flow rate and other physical parameters
such as the friction factor, which is also a function of the flow rate (through the Reynolds number)
and additional parameters, such as the relative roughness and the kinematic viscosity. For laminar flow,
the friction factor can be calculated by using the Hagen-Poiseuille law, which is very simple (Hitzer,
2001). Nevertheless, in real operating conditions, pipelines work in the turbulent flow, and the friction
computation becomes more complicated. In such a case, the consensual way to calculate the friction
factor is by using the Colebrook-White (CW) equation, which is an implicit formula for which many
explicit approximations have been proposed (Brkić, 2011). A mutual problem of using the CW equation
or its approximations, however, is that they require the current value of the relative roughness along the
pipeline. The relative roughness can be measured in real time by using a profilometer (as seen in Farshad
et al. (2001); Sletfjerding and Gudmundsson (2003)), but it is necessary to wait for the complete scan of
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the pipeline’s internal wall. This test can be quite lengthy if the pipe is long or difficult to access, which
leads to considering better alternatives for avoiding the use of the actual value of the relative roughness.

An alternative is the calibration of a model for the head loss1. To perform this alternative, it is neces-
sary to provide a calibration method (a parameter estimation method) and a model of the head loss (e.g.,
the DW equation or the HW formula) with parameters to be experimentally estimated.

The calibration problem remains an open problem. Currently, many researchers dedicate much effort
in proposing more efficient and easy-to-tune methods to convince practitioners to use them. Recently
in Kumar et al. (2010), the authors presented an approach to estimate the roughness coefficients of
the pipelines of a network, which is based on a k-means clustering algorithm and on the theory of
graphs. In the same year, the Battle of the Water Calibration Networks (BWCN) was conducted by 14
teams from academia, water utilities, and private consultants. The BWCN results were given at the 12th
Annual Conference on Water Distribution Systems Analysis and presented in Ostfeld et al. (2011). More
recently, in Gao (2017) a method based on weighted least squares (WLS) was presented to compute the
Hazen-Williams C factors of pipelines. In Dı́az et al. (2017), the authors proposed a method based on
a multi-period state estimation and mathematical programming decomposition techniques. Additionally,
they presented an analysis of the observability of the roughness from available measurements.

In this spirit, this contribution proposes a real-time approach based on a state observer for calibrating
the coefficient and the exponent of a power law that models the head loss only as a function of the
flow rate and not as a function of the relative roughness and other uncertain parameters. The proposed
approach only requires a flow rate and pressure measurements. Therefore, this method can be used
in trunk pipelines instrumented with pressure and flow rate sensors placed at locations such as pump
stations, where these sensors are usually installed.

The benefits of proposing a power law to approximate the total head loss together with a method
for calibrating it in real time are the following: (a) to have a head loss model that expresses a general
representation of conventional formulas used to compute the head loss such as the HW, the Manning or
the Valiantzas equations (Chapter 2, Larock et al. (1999), Chapter 2, Chaudhry (1979)); (b) to avoid using
a complicated formula such as the CW equation, which is implicit because it requires iterative methods
to be solved; (c) to have a valid model for a given operation region instead of formulas for describing the
complete turbulent regimen; (d) to have an identifiable model, i.e., a model with a structure involving
easily estimated parameters by means of real-time algorithms; (e) to have a differentiable function.

An essential requirement in applying our approach is that the flow in the pipeline must be excited to
ensure the identifiability of the parameters. This means that the flow in the pipeline must be perturbed
during a short period while the parameters are estimated. Therefore, in order to satisfy the excitation
condition, a steady-oscillatory flow in the pipeline is induced by injecting a sinusoidal signal into the
frequency drive of the supply pump. Many of the off-line methods for detecting leaks and identifying
parameters proposed by the hydraulic community, which have been verified in a laboratory, are based
on the induction of steady-oscillatory flow in a pipeline by the sinusoidal maneuver of a valve (Xu and
Karney, 2017).

To estimate the parameters of power laws in the context addressed here, some approaches have been
proposed: for instance, those presented in Datta and Sridharan (1994) and Reddy et al. (1996), which use
least squares and information (pressure and flow rate) recorded during a prescribed period. Moreover,

1 The parameter estimation process in a model is called the calibration process in hydraulics.
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the reader can find in Savic et al. (2009) a masterful review of proposed methods to calibrate pipelines
and networks. The authors of this review categorize the methods as steady-state and transient and discuss
the advantages and drawbacks of each one.

The novelty of this contribution is an experimental validation and the improvement of the approach
presented in Torres and Verde (2018), which in turn was inspired by early results from Rojas et al.
(2018), where the real-time estimation of the coefficients of both a quadratic and a cubic equation that
approximate the head loss in a pipeline is proposed.

8.2 Physical system and modeling

This section describes the characteristics of the pipelines for which the proposed method can be used.
This section also presents the extended model (an auxiliary model) used for the design of the state ob-
server that performs the parameter estimation. Such an auxiliary system is deduced from a mathematical
model commonly used in hydraulic problems: the rigid water column (RWC) model (Cabrera et al.,
1995; Nault and Karney, 2016), which in turn is deduced from physical principles.

8.2.1 Physical system

The approach presented in this chapter works for pipelines that satisfy the following: unidirectional flow
and constant cross-sectional area. Furthermore, such pipelines must be instrumented such that pressure
head measurements at the ends of the pipeline are available, as well as a flow rate recording at any point
of the pipeline.

8.2.2 Rigid water column model

In this chapter, the model considered for representing the head loss in a pipeline is the power law DH =
WQg , where W and g  2 are parameters related to the friction losses and fluid properties.

Since the goal of this chapter is to propose a real-time method for experimentally estimating W and
g by using a state observer, a dynamical model involving these parameters is needed. This model is the
so-called RWC model, which describes the flow in one dimension by ignoring the compressibility of
the fluid and the elasticity of the conduit such that the entire column of fluid is assumed to move as a
rigid body. The RWC model can be used to describe short pipelines or small sections of long-distance
pipelines. For describing the overall behavior of the flow in pressurized long-distance pipelines, the fluid
should be considered as compressible or slightly compressible. By assuming slight compressibility, the
model must be modified to consider the unsteady friction, which involves the pressure wave propagation
velocity and pressure changes along the spatial domain. This is out of the scope of this chapter.

The RWC model for a pipeline without extractions is expressed by the following equation (Islam and
Chaudhry, 1998; Nault and Karney, 2016):
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Q̇ = bDH�aQg+1, (8.3)
ym = Q,

where ym is the measured flow rate, b and a are parameters with appropriate units of measure.
If Q̇ = 0, Eq. (8.3) becomes an expression for the head loss

DH =
a
b

Qg+1, (8.4)

which, by defining W = a/b , becomes
DH = WQg+1, (8.5)

which is nothing but the head loss model to be updated experimentally in real-time. Therefore, to obtain
an estimation of W , a and b must first be estimated.

Once W and g are estimated, these can be associated with the physical characteristics of both the
pipeline and fluid by means of conventional formulas for head loss, e.g., the Darcy-Weisbach equation,
the Hazen-Willian equation or the Gauckler–Manning–Strickler formula. If the Darcy-Weisbach is used
for a pipeline with length L, then g = 1 and W = f (Q)L/2gfA2

r .

8.3 Real-time calibration approach

In order to estimate a , b and g by using a state observer, these parameters can be considered as state
variables and they are added to the state vector of the RWC model given by (8.3). The above results
in an extended model that combines the equations governing the evolution of the original state and the
equations describing the evolution of the parameters.

8.3.1 Extended model

The extended model is obtained by defining the following states: x1 = � ln(Q), x2 = b , x3 = aQg and
x4 = g . In addition, these states form the state vector x = [x1 x2 x3 x4]T . The resulting extended model
reads as follows:

ẋ =

0

BB@

0 �u1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCAx+

0

BB@

0
0

x3x4u2
0

1

CCA,

y =
�

1 0 0 0
�

x, (8.6)

where u1 = DH/Q and u2 = Q̇/Q are assumed to be the inputs that form the input vector u = [u1 u2] and
the output variable is x1.

Remark 1: The system given by Eq. (8.6) has the following general structure:
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ẋ = A(u)x+B(u,x),
y = Cx, (8.7)

where A(u) 2 Rn⇥n depends only on inputs and B(u,x) 2 Rn⇥1 is a nonlinear vector with a triangular
structure (Besançon, 2007).

Therefore, one proposes in the following paragraphs a state observer for a system with the structure
given by Eq. (8.7).

8.3.2 State observer

For the state estimation of extended dynamical systems with the form given by Eq. (8.7), it was proven
in Torres et al. (2012) that with a specific excitation and under the usual technical (Lipschitz) assumption
for a high-gain design, one can obtain an asymptotic estimation of the extended state with the following
high-gain observer:

˙̂x = A(u)x̂+B(u, x̂)+SCT (y� ŷ), (8.8)
ŷ = Cx̂,

where x̂ is the estimated extended state vector, u is the input vector, y is the measured output, and S is the
solution of the Lyapunov equation

Ṡ = lS+[A(u)+dBl (u, x̂)]S+S[A(u)+dBl (u, x̂)]T �SCTCS, (8.9)

where l is a parameter for adjusting the convergence rate and dBl (u, x̂) = ∂B(u, x̂)/∂ x̂ is the Jacobian
of B(u, x̂). Particularly, for system (8.6), the Jacobian reads as follows:

dBl (u, x̂) =
∂B(u, x̂)

∂x
=

0

BB@

0 0 0 0
0 0 0 0
0 0 u2x̂4 u2x̂3
0 0 0 0

1

CCA . (8.10)

Remark 2: Notice that â can be obtained as a = x̂3/(�exp(x̂1))x̂4 .
Remark 3: Since the estimations of â , b̂ and ĝ from the state observer are quantities that evolve over

time and may contain both noise and unmodeled effects, the mean of these estimations must then be
calculated once these estimations reach steady state in order to have a unique value: ā , b̄ and ḡ . The
variation of the estimates from the mean values can be calculated as follows: ea = ā � â , eb = b̄ � b̂
and eg = ḡ� ĝ to analyze the unmodeled effects.

A condition for the convergence of the estimation is that inputs u1 and u2 must be persistently exciting:
they need to satisfy a persistent or excitation condition, which is complicated to fulfill in advance. There-
fore, inputs are usually designed heuristically and checked afterwards. Recently, some optimization-
based methods for characterizing the persistent inputs for a particular class of systems have been pro-
posed; see Scola et al. (2018) for instance. These methods, however, need to be extended to other classes
of nonlinear systems.
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8.3.3 Persistent condition: Steady-oscillatory flow

In this contribution, to obtain inputs that satisfy the persistent condition, the procedure detailed in
Besançon (2016) was used, which states that a persistent input may be chosen on the basis of the output
derivatives’ mapping. Therefore, the mapping for system (8.6) was calculated, which reads as follows:

F(x(t),u(t),y(t)) =

0

BB@

y(t)
ẏ(t)
ÿ(t)

y(3)(t)

1

CCA=

0

BB@

x1
�x2u1 + x3
�x2u̇1 + x3x4u2

�x2ü1 + x3x2
4u2

2 + x3x4u̇2

1

CCA . (8.11)

The mapping (8.11) becomes injective as soon as u1, u2 and their derivatives are nonzero. Therefore,
for any input with period T , the excitation condition is validated in a time window given by the period T .
Sinus-like pressure heads and flow rate are natural candidates for satisfying such an injectivity. Moreover,
many of the off-line methods for detecting leaks and identifying parameters proposed by the hydraulic
community, which have been verified in a laboratory, are based on the induction of steady-oscillatory
flow in a pipeline by the sinusoidal maneuver of a valve (Xu and Karney, 2017).

8.3.4 Derivative of the flow rate measurement

For implementing the state observer (8.8), the derivative of the flow rate Q measurement is required.
To obtain such a derivative, the following two steps are proposed, taking into account both the periodic
nature of the signal and the knowledge of its fundamental frequency.

1. Estimate on-line the Fourier coefficients that approximate the signal. This task can be achieved by
using the following proposed observer, which is based on an auxiliary system.
The first state of the auxiliary system (used for the observer design) is the integral of Q expressed as
the finite version of the Fourier series:

n1(t) =
Z t

0

"
a0

2
+

N

Â
i=1

(ai cos(iwt)+bi sin(iwt))

#
dt, (8.12)

where N denotes the total number of the frequency components taken into account to approximate the
signal Q.
By defining the Fourier coefficients a0, ai and bi as the rest of the states, the auxiliary system is defined
as follows:
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ṅ =

0

BBB@

0 1 cos(wt) sin(wt) ... cos(Nwt) sin(Nwt)
0 0 �w sin(wt) w cos(wt) ... �Nw sin(Nwt) Nw cos(Nwt)
...

...
0 0 �wN sin(wt) wN cos(wt) ... �NNwN sin(Nwt) NNwN cos(Nwt)

1

CCCA

| {z }
Aw

n , (8.13)

yw = Cwn ,

where the state vector n 2 RM and the output vector Cw 2 RM are, respectively, defined as

n =

Z t

0
Q a0 a1 b1 ... aN bN

�T
,

Cw = [1 0 ... 0].

Furthermore, M = 2N +2 is the total number of states.
The states of system (8.13), i.e., the Fourier coefficients, can then be estimated by using the following
state observer:

˙̂n = Awn̂ +Kwew , (8.14)
ŷw = Cwn̂ , (8.15)

where ew =
R t

0 Q� ŷw , Kw = SwCT
w and Sw is calculated with the Lyapunov equation

Ṡw = µSw +AwSw +SwAT
w �Sw(CT

wCw)Sw , (8.16)

where µ is the parameter for manipulating the convergence rate.
Observer (8.14) was tuned: µ = 1, Sw(0) = I, where I is the identity matrix, the state initial conditions
were chosen to be 0 and N = 3. This latter parameter was chosen in this way to consider only the more
meaningful frequency components: the fundamental frequency and two harmonics.

2. Construct the derivative of Q by using the estimated Fourier coefficients as follows:

ˆ̇Q =
N

Â
i=1

�
�âiiw sin(iwt)+ b̂iiw cos(iwt)

�
, (8.17)

where N = 3.

Thus, by using the two estimators (8.8) and (8.14), the implementation to obtain the parameters of the
power law is summarized in the scheme given in Fig. 8.1.

8.4 Experiments

The results described below were obtained during experimental tests developed in a pipeline located
at II-UNAM. A layout of the pipeline and its physical parameters are presented in Fig. 8.2 and Table
8.1, respectively. The installation consists of a storage tank of 10 [m3] and a spiral loop on the vertical
plane that returns the water to the tank. In addition, a servo valve is connected at the end of the line to
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Fig. 8.1: Proposed approach

Fig. 8.2: Pipeline located at the hydrodynamics laboratory of II-UNAM

Table 8.1: Parameters of the laboratory pipeline

Parameters Values
D [m] 0.076
L [m] 163.715

g [m/s2] 9.81
b [m/s] 1330

n [m2/s] 10�6@20°C

restrict the water flow. Two hydraulic pumps of variable speed fix the upstream boundary condition of
the system: Pump 1 with a maximum power of 7.5 [HP] and Pump 2 with a maximum of 10 [HP]. Only
Pump 1 was used here by changing the operation points with a variable frequency driver. Six valves
are installed to emulate leaks or branches. The pipeline is instrumented with two flowmeters and two
pressure sensors at the extremes. The Promass 83F flowmeters are based on the Coriolis principle with
a maximum error of ±0.05%, while the Cerabar PMP71 pressure sensors are based on the deflection
measurement of a diaphragm with a precision of 0.05%. All data during the experiments were sampled
at 100 [ms].
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In what follows, the description and analysis of each of the elements involved in the implementation
and execution of the proposed method are presented.
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Fig. 8.3: Pressure head and flow rate recordings taken during the changes of operating point

8.4.1 Steady-state flow

Table 8.2: Steady-state operating points (OPs)

OP Q̄ [m3/s] DH [mH2O]
A 0.0112 15.3839
B 0.0103 13.0320
C 0.0093 10.8155
D 0.0083 8.7336
E 0.0073 6.8807
F 0.0063 5.2348
G 0.0053 3.7866
H 0.0043 2.5240
I 0.0033 1.4993
J 0.0022 0.6865
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To capture and show the behavior of the head loss as a function of the flow rate, the pipeline was set at
different operating points by manipulating the supply pump through a variable frequency drive. Figure
8.3 shows the recordings taken during the experiments: the flow rate, which was measured upstream in
the pipeline, and the head loss calculated from pressure records measured upstream and downstream in
the pipe. The staggered form of the recorded signals reveals how the change of operating points was
performed: from the highest possible point when the pump operates at the electrical network’s frequency
to the lowest point when the flow measurement was still reliable. The operation points are labeled with
the letter A, B, C,...,I. Once the data acquisition was concluded, the mean of the flow rate measurement at
each operating point, denoted hereafter as Q̄, was obtained as well as the mean of the head loss, denoted
as DH. Table 8.2 contains the values of Q̄ and DH.

8.4.2 Steady-oscillatory flow

One way to generate steady-oscillatory flow in the laboratory pipeline is by injecting a sinusoidal signal
into the pump’s variable frequency drive (VFD). Taking this fact into account, two different steady-
oscillatory flows were generated for testing the proposed calibration approach. The frequency of both
sinusoidal signals injected into the pump’s VFD was the same: w = 0.1p [rad/s] (i.e. f = 0.05 [Hz]).
The amplitude and offset of the hydraulic variables associated with both steady-oscillatory flows are
listed in Table 8.3.

Figure 8.4 shows the head loss as a function of the flow rate for both the high flow and the low
flow. This figure highlights the fact that oscillatory flows only cover a range of the total range of all the
operating points used to show the head loss behavior. Figure 8.5 shows the derivative of the flow rate
corresponding to the high flow.

Table 8.3: Features of the generated steady-oscillatory flows

Variable Low flow High flow
Q Offset: 0.007351 [m3/s] Offset: 0.00932 [m3/s]

Amplitude: 0.0032 [m3/s] Amplitude: 0.0032 [m3/s]
Hin Offset: 11.15 [mH2O] Offset: 16.02 [mH2O]

Amplitude: 8.192 [mH2O] Amplitude: 9.75 [mH2O]
Hout Offset: 4.03 [mH2O] Offset: 5.00 [mH2O]

Amplitude: 1.43 [mH2O] Amplitude: 1.84 [mH2O]

8.4.3 Tuning of the state observer

Two estimations of the power-law parameters were performed. The first by using the high flow as the
excitation and the second one by using the low flow. Both estimations were executed by using the same
tuning parameters for the state observer (8.8). The observer was tuned by setting l = 1. Its initial condi-
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Fig. 8.4: Head loss versus flow rate in steady state and steady-oscillatory state
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Fig. 8.5: Q̇ in a time window of its computation for the high flow

tions were set as follows: x̂(0) =
�

0.12 0.001 0.01 0.08
�T and S(0) = I. The observer was implemented

in MATLAB/Simulinkr by using the ODE3 solver with D t = 0.001 [s] as the time step. Figure 8.6
shows the time evolution of b̂ and ĝ for the high flow and the low flow. The means of the estimated
parameters for the high flow and low flow were very close. In other words, the estimation results are
slightly insensitive to the offset of the steady-oscillatory flow. Therefore, only the means corresponding
to the high flow are considered in the rest of the discussion, which indeed resulted as follows: ḡ = 0.8897,
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b̄ = 2.088⇥ 10�4 and ā = 14.35. A consequence of these values is W̄ = ā/b̄ = 74569, which is the
coefficient of the estimated head loss given as dDH = 74569Q1.8897.
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Fig. 8.6: Time evolution of b̂ and ĝ by using the high flow and the low flow as excitation

8.5 Analysis of the results

In order to evaluate the performance of both the power law and the proposed algorithm, two evaluations
were performed.

8.5.1 Model comparison

The first is a comparison of the errors calculated from real data and several models of the head loss
in steady state. These models are as follows: the Hazen-Williams (HW) formula, a quadratic equation
without the linear term and a quadratic equation. The coefficients of the head loss models were also
estimated by using state observers. The errors are calculated as the difference between the experimental
data and the estimated with each formula, i.e., e = DH �dDH. The resulting errors are presented in
Table 8.4. The smallest errors are written in bold. Notice that the power law approximates with better
accuracy the behavior of the head loss at almost all the operation points. To corroborate this fact, a visual
comparison can be performed in Fig. 8.7, which concretely shows the estimated head loss (with each
formula) normalized with respect to the real head loss. It is noticeable that the power law and the HW
formula approximate with better accuracy the head loss behavior.
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Table 8.4: Modeling errors

OP WQg+1 q1Q2 q11Q2 +q21Q q2Q1.852

A 2.4518e-06 -0.3588 -0.0541 0.0770
B -0.0032 -0.1789 -0.0549 0.0191
C 0.0649 0.0419 0.0057 0.0420
D 0.0207 0.1086 -0.0538 -0.0345
E 0.0188 0.1820 -0.0768 -0.0577
F 0.0127 0.2175 -0.1064 -0.0744
G 0.0114 0.2275 -0.1307 -0.0765
H -0.0078 0.1922 -0.1681 -0.0874
I -0.0283 0.1332 -0.1962 -0.0924
J -0.0529 0.0527 -0.2097 -0.0952
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Fig. 8.7: Comparison of different head-loss models in steady state

The second evaluation is a comparison between the estimation results provided by the proposed ap-
proach and the results obtained with the next estimation methodology. The MATLAB instruction fit
was used to find the parameters of the power law by interpolating the operation points B,C and D, which
correspond to the same operation range of the oscillatory flow used for the estimation with the state ob-
server: the high flow. Check Fig. 8.4 to verify this fact. The results were W f it = 68730 and g f it = 0.8717.

The relative errors of the fitting for each operation point by using both methods are displayed in Table
8.5. Note that the adjustment with the power law estimated with the proposed approach has small errors
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Table 8.5: Approach errors

OP Online-based approach MATLAB(B:D)
A 2.451⇥10�6 0.0108
B -0.0032 -0.0146
C 0.0649 0.0358
D 0.0207 -0.0204
E 0.0188 -0.0293
F 0.0127 -0.0376
G 0.0114 -0.0368
H -0.0078 -0.0498
I -0.0283 -0.0612
J -0.0529 -0.0741

in almost all points of operation, except points C and D. This fact is a clear evidence that the proposed
method estimates accurately the values for the power law.

8.6 Relevance of head loss calibration in leak location

One of the requirements for implementing a model-based fault diagnosis system is to have a suitable and
well-calibrated model. Furthermore, when we speak about calibration in the context of modeling and
analysis of dynamic systems, we refer to the identification of systems, which is the process by which the
parameters of a model are adjusted, using data measured from the real process. Thus, the error between
the model and the process is the smallest possible using some metric.

In the context of Fault Detection and Identification, there are parameters or quantities that can most
notably affect the diagnosis of a fault, so their estimation during calibration should be emphasized to
obtain the best accurate diagnosis. In the case of leak detection and location, this quantity is head loss.

To verify the above remark, numerical simulations of a leak location algorithm based on a state ob-
server were performed. The state observer is based on the model, which describes the flow in two dif-
ferent sections of the pipeline: the section to the left of the leak (namely Dz = z`� z0) where the head
loss is DH = Hin�H` and the section to the right of the leak (namely Dz = L� z`) where the head loss
is DH = H`�Hout :

Q̇in =
q

z`� z0
(Hin�H`)�aQg+1

in , (8.18)

Q̇out =
q

L� z`
(H`�Hout)�aQg+1

out . (8.19)

where Qin and Qout are the inlet an outlet flow rates, respectively. Hin and Hout are the upstream and
downstream hydraulic heads, respectively. q = gAr, a is a factor involving the friction losses, g is the
head loss exponent, z0 = 0 is the origin coordinate (the upstream end) of the pipeline, z` is the leak
coordinate (position) and H` is the pressure head at the leak junction.
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If H` is replaced by any of the following equations obtained from (8.18) and (8.19) in steady state

H` = Hin�
a
q

Qg+1
in z`, H` =

a
q

Qg+1
out (L� z`)+Hout , (8.20)

and by defining the following new state variables x1 = Qin�Qout and x2 = 1/z`, then the following
second-order system can be obtained from (8.18) and (8.19):

ẋ1 = x2

h
q(Hin�Hout)�L

⇣
aQg+1

out

⌘i
�a

⇣
Qg+1

in �Qg+1
out

⌘
,

ẋ2 = 0. (8.21)

Notice that (8.21) has the following general form:


ẋ1
ẋ2

�
=


0 u
0 0

�
x1
x2

�
+


j
0

�
, (8.22)

y = x1,

where u =
⇥
q(Hin�Hout)�L

�
aQ2

out
�⇤

and j =�a
�
Q2

in�Q2
out

�
are known smooth functions.

For system (8.22), the following state observer for locating single leaks was proposed in Torres et al.
(2019):

 ˙̂x1
˙̂x2

�
=


0 u
0 0

�

| {z }
A


x̂1
x̂2

�
+


j
0

�
+


K1
K2

�
e,

ŷ =
⇥

1 0
⇤

| {z }
C

x̂, (8.23)

where x̂1 = Q̂in�Q̂out and x̂2 = 1/ẑ` are the states to be estimated. Moreover, e= y� x̂1 is the observation
error. K1 and K2 are elements of the gain vector K, which can be calculated as follows: K = S�1CT , where
S is the solution of the following matrix Lyapunov differential equation:

Ṡ =�lS�AT S�SA+CTC, (8.24)

with l > 0 and S(0)> 0.
To recover the estimation of the leak position from the state observer, x̂2 must be inverted: ẑ` = 1/x̂2.
The fundamental objective of the numerical simulations was to investigate the result of the leak loca-

tion by taking into account uncertainty in the parameter a , which is a key quantity used for describing
the head loss in a duct.

The uncertainty was modeled by a uniform probability density function (p.d.f.) given by U (a,b),
where a⇠ a�0.2a and b⇠ a +0.2a . A histogram of the p.d.f. for a is given in Fig. 8.8.

The leaks were simulated at four different positions: z` = [122.79 81.86 40.93 20.465] (m),
where L = 163.72 (m) is the total length of the simulated pipeline. The rest of the physical parame-
ters used to simulate the pipeline are given in Table 8.1.

The results of the leak location with friction uncertainty for the different position cases are summarized
in Table 8.6, which shows the estimate clearly deviates when the value of a is not exactly known. On
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Fig. 8.8: a uncertainty distribution

the contrary, in Fig. 8.9 is shown that the true leak position’s values are estimated when there is no
uncertainty in friction.

0 10 20 30 40 50 60 70 80 90 100

(s)

0

20

40

60

80

100

120

140

160

180

(m
)

X 33.22
Y 122.807

X 35.84
Y 81.8748

X 45.02
Y 40.9432

X 70.43
Y 20.4776

Fig. 8.9: Leak position estimation with the true value for µ

Table 8.6: Mean and standard deviation of the leak position estimations

Leak position (m) Mean (m) Standard Deviation (m)
20.465 20.36 8.52
40.93 40.41 7.20
81.86 80.70 5.30

122.79 120.917 5.07
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8.7 Conclusions

This chapter has proposed a method based on the rigid water column model to calibrate the parameters
of a power law that describes the head loss of a pipeline. The method can be applied using real-time
information from, for example, SCADA or IoT systems. Some advantages of the proposed method are
listed below.

• The method permits calibrating a head loss model with only two parameters to be identified, instead
of calibrating a model with more than two parameters, such as the DW equation or the HW formula.

• The method is an alternative to calibrate a head loss model even though the physical parameters of the
pipeline, such as roughness or the cross-sectional area, are unknown.

• It allows finding a good set of parameters so that the power-law model can be adjusted accurately to
the head loss curve. Regarding this advantage, a comparison between the parameter estimation was
presented with the new proposition and the offline least squares algorithm performed using MATLAB.

• It provides similar results regardless of the pipeline operation region in which the oscillatory flow is
generated for the calibration.

• The method provides a good set of parameters so that the power-law model accurately describes the
head loss at all the operating points, regardless of whether the oscillatory flow has been generated
around an operating point in a small region. This is an advantage over other methods that require
information (pressure and flow rate) from all the operation points to obtain a satisfactory set of param-
eters.

• It can be applied to a long pipeline by measuring pressure at two different pipeline coordinates delim-
iting a short section of the pipeline.

• It can be used online together with leak diagnosis algorithms.
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Dı́az, S., Mı́nguez, R., and González, J. (2017). Calibration via multi-period state estimation in water

distribution systems. Water resources management, 31(15):4801–4819.
Farshad, F. F., Pesacreta, T. C., Garber, J. D., and Bikki, S. (2001). A comparison of surface roughness

of pipes as measured by two profilometers and atomic force microscopy. Scanning, 23(4):241–248.
Gao, T. (2017). Roughness and demand estimation in water distribution networks using head loss ad-

justment. Journal of Water Resources Planning and Management, 143(12):04017070.
Hitzer, E. (2001). Early works on the Hagen-Poiseuille flow. Memoirs-faculty of Engineering Fukui

University, 49(1):45–54.
Islam, M. R. and Chaudhry, M. H. (1998). Modeling of constituent transport in unsteady flows in pipe

networks. Journal of Hydraulic Engineering, 124(11):1115–1124.
Kumar, S. M., Narasimhan, S., and Bhallamudi, S. M. (2010). Parameter estimation in water distribution

networks. Water resources management, 24(6):1251–1272.
Larock, B. E., Jeppson, R. W., and Watters, G. Z. (1999). Hydraulics of pipeline systems. CRC press.
Liou, C. P. (1998). Limitations and proper use of the Hazen-Williams equation. Journal of Hydraulic

Engineering, 124(9):951–954.

���



192 Lizeth Torres and Cristina Verde

Moore, W. (1959) Relationships between pipe resistance formulas. Journal of the Hydraulics Division.
85(3): 25–41

Nault, J. and Karney, B. (2016). Improved rigid water column formulation for simulating slow transients
and controlled operations. Journal of Hydraulic Engineering, 142(9):04016025.

Ostfeld, A., Salomons, E., Ormsbee, L., Uber, J. G., Bros, C. M., Kalungi, P., Burd, R., Zazula-Coetzee,
B., Belrain, T., Kang, D., et al. (2011). Battle of the water calibration networks. Journal of Water
Resources Planning and Management, 138(5):523–532.
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