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Abstract

The problem of automatic fault diagnosis and tolerant control for dynamic systems has become essential
research topic during the last years as part of the industry’s monitoring and supervision of complex
systems. This fact has motivated diverse research groups who are developing fault diagnosis technologies
in Mexican academic institutions. Thereby, the fault diagnosis community considered it relevant to share
our experience by showing the benefits of the novel diagnostic techniques implemented by software with
some applications tested in our country.

Thus, this monograph, written by several experts, has been prepared by selecting the main topics
discussed during the seminar on Fault Diagnosis and Tolerant Control organized face-to-face and virtual
by the authors over the last four years. The Topics features include: (a) The design of a robust computer
numerical control CNC of new generation; (b) The faults isolation problem in sensors and actuators
of a helicopter prototype; (c) Failure diagnosis in the boiler system of a distillation column; (d) The
remaining functional live analysis of an aerospace propulsion system; and (e) Three issues associated
with leaks in pipelines. One relates to a water distribution network; the second shows an algorithm to
isolate sequential leaks in the main conduit, and the last links with the estimation of the head loss of the
line in real-time.

Keywords: Model-based fault diagnosis, Data-driven fault detection, Degradation model, Inteligent
Control System.
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Resumen

El problema del diagnóstico automático de fallas y control tolerante para sistemas dinámicos ha
adquirido cierta importancia como parte de la tecnologı́a de monitoreo y supervisión de sistemas com-
plejos. Este interés se ve reflejado en la creación de diversos grupos de investigación en instituciones
académicas de México que cultivan la problemática. De este modo, la comunidad de diagnóstico de
fallas consideró relevante compartir nuestra experiencia mostrando los beneficios de algunas técnicas
novedosas de diagnóstico implementadas por software con aplicaciones validadas en nuestro paı́s.

Ası́, esta monografı́a redactada por diversos expertos, fue preparada seleccionando los temas prin-
cipales discutidos durante el seminario de Diagnóstico de Fallas y Control Tolerante llevado a cabo de
manera presencial y virtual durante los últimos cuatro años por los expertos. Los temas tratados incluyen:
(a) El diseño de un control numérico por computadora CNC; (b) El problema de aislamiento de fallas
en los sensores y actuadores de una maqueta de un helicóptero; (c) El diagnóstico de fallas en el sistema
de calentamiento de una columna de destilación piloto; (d) El análisis de la vida funcionales de un sis-
tema de propulsión aeroespacial; y (e) Tres problemas asociados con fugas en ductos. Uno relacionado
con la localización de fugas en una red de distribución de aguas; el segundo, muestra un algoritmo que
opera en tiempo real para aislar fugas secuenciales en un ducto principal; y el último relacionado con la
estimación en tiempo real de la perdida de carga de una lı́nea.

Palabras claves: Diagnóstico de fallas basado en modelo, Detección de fallas basada en datos, Modelo
de degradación, Sistema de control inteligente.
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Preface

The high quality and ramifications of the production processes, the complexity of technological infras-
tructure, and software systems currently demand the design of reliable and efficient integrated automatic
control systems. It is well known that a single fault can develop into multiple defects if the operator
ignores or misunderstands the warning signals. These reasons have motivated the development of ad-
vanced automatization technologies by including supervision and monitoring tasks with fault detection
and diagnosis facilities. This implies the design and implementation of automated devices based on
physical principles, knowledge, and data-driven techniques. As a result of the aforementioned current
demand, multidisciplinary diverse groups have been integrated that design diagnostic tools for specific
applications by considering control and estimation theory, artificial intelligence tools, and engineering
knowledge of the critical physical system in question. This development has led to the crucial concepts
associated with fault diagnosis during the last 40 years. Advanced tools have been conceived in co-
operation with researchers, engineers and technicians concerned about the safety, reliability and health
performance of physical systems for society’s benefit. Thus, critical fault scenarios for each engineering
field have been studied and the fields’ diagnosis tools have been implemented. Vulnerable industries
such as aeronautic, nuclear, transportation, petrochemical, and electrical are examples where real-time
fault diagnosis requirements are mandatory. By considering wireless communications and digital de-
vices, one can comment that the advanced supervision systems with fault diagnosis allow improvements
in aircraft maintenance, complex processes, rotating machines, autonomous vehicles, and service in-
frastructures, such as water, electricity and wireless communication. As a consequence, this technology
can be extended to all physical systems, and it produces better environmental protection, more effective
maintenance schedules, and better product quality.

The main objective of this monograph is to provide a set of technical contributions related to the
critical subject of safe automatic control systems. In particular, advanced fault detection and isolation
solutions, as well as fault-tolerant controls, are addressed, and some applications exemplify the advan-
tages of the safe control technology implemented by software. The topics of this manuscript related
to safe control have been studied by academic colleagues and postgraduate students of 10 institutions
who have regularly attended the workshop Fault Diagnosis and Tolerant Control from the Spanish Di-
agnóstico de Fallas y Control Tolerante initiated and organized by academics over the last four years.
Based on the material introduced in the workshop, some applications were selected that will be presented
and discussed by using experimental results. Thus, this project is the result of the academic relationship
between authors, and part of the content was generated from much fruitful discussions within the work-
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shop’s diagnostic and monitoring group and invited academic colleagues. The title of the monograph,
Fault Diagnosis and Tolerant Control: Applications, was chosen to reflect the broad scope of the cur-
rent fault diagnosis methods and the experience of our community. Seven case studies and their solutions
were selected, where some fault diagnosis and control techniques will be discussed by using experimen-
tal results. The authors are all specialists in their subject, and the distribution of the chapters was selected
based on their experience.

The presentation of the topics is accessible but formal, and a reader with a background in automatic
control systems and signal processing can easily follow it. Within this monograph, all the procedures are
introduced by considering the real cases, and each chapter can be read independently. In this way, the
project also indirectly strives to promote the advantages of some feasible applications where advanced
fault diagnosis tools and the fault-tolerant control can be used to improve the safety and reliability of
critical physical systems.

This project was possible through the effort of the authors to present their recent research topics and
to disseminate the newly available technologies for the improvement of security and system reliability. I
thank all the authors for their support and dedication while preparing the manuscript. On behalf of all of
them, I will like to thank our institutions that gave us the opportunity to prepare the text under pandemic
conditions:

• Instituto Tecnológico de Morelia,
• Instituto Tecnológico de Tuxtla Gutiérrez,
• Tecnológico de Monterrey,
• Universidad Tecnológica de La Habana José Antonio Echeverrı́a,
• Universidad Autónoma de Nuevo León,
• Vanderbilt University,
• Universidad Michoacana de San Nicolás de Hidalgo, and
• Universidad Nacional Autónoma de México.

I will also wish to thank the reviewers of the Comité Editorial of the Instituto de Ingenierı́a, who helped
us improve the manuscript, and Biologist Blanca Gamboa and the proofreader Mary-Ann Hall for their
support in complying with the editing and typography standards of the manuscript.

Mexico City Cristina Verde
February 2023
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Chapter 1

Introduction

Cristina Verde1

Abstract This chapter serves as an introduction to the main topic of this monograph related to some
applications of advanced technologies for fault diagnosis and tolerant control by using the concepts
of redundancy and estimation for qualitative and quantitative models. These technologies implemented
mainly by software operate in real-time and increase the security of infrastructures and indirect envi-
ronmental protection. These tools also constitute a qualitative step in analyzing the behavior of complex
systems, their operation in failure conditions, and the stage of a safe stop in an emergency condition.
At the initiative of various academics in the country, who cultivate the area of security and fault-tolerant
control, a series of seminars were organized to reinforce the area and encourage young engineers to work
in it. The original idea was to rotate the event between various institutions. The pandemic forced us to
change the seminar to a virtual form. In September 2021, the first cycle of the meetings was concluded,
generating this monograph with some projects discussed in the forum. The chapter includes a summary
of the different applications presented in the monograph and discussed throughout the set of seminars
Fault Detection and Isolation, and Tolerant Control performed with the participation of academic
experts in the field and postgraduate students of our institutions over the last four years.

1.1 Background and motivation

Physical systems and their operation have become more complex in the last forty years since the inter-
connection of components and devices have increased, and the physical processes involved in the systems
are now more sophisticated (Clark (1978); Patton et al. (1989); Escobet (2019)). Thus, society demands a
reliable operation of critical systems such as hazardous fluids and electricity transportation networks. In
this century, the platform explosion of the British Petroleum Company in the Gulf of Mexico caused the
largest marine oil spill and is an example of the incidents that should not occur. Thus, governments and
international institutions have established regulatory security rules. The implementation of these rules,
however, only reflects reality in some industries, services, and societies. Production and profitability are
considered in many cases the highest priority in a system instead of safety warnings. Therefore, it is
our responsibility as engineers and technicians to assume the worst possible fault scenarios in system

1 Instituto de Ingenierı́a UNAM, Mexico, e-mail: verde@unam.mx

�



2 Cristina Verde

adjustment to avoid damaging the society and the environment through abnormal events in systems and
infrastructure.

Technology can be considered valuable as long as it can provide a service to society in a reliable way.
Therefore, society is demanding that safe technologies become more reliable and safe in the operation
of any component of a physical system. This requirement extends beyond nuclear reactors, aircraft, and
many chemical processes to systems likes autonomous vehicles, power plants, hydraulic networks, and
road networks, where availability is vital. We emphasize that the reliability specification is a crucial
concern in the design of digital devices and modern infrastructure depending on advanced technologies,
also known as intelligent systems. Reliability can be defined as the ability of a system to perform its
intended function over a given period of time (Blanke et al., 2006). Incidents and disasters that are linked
to the absence of reliability are failure states. This means the inability to perform the intended function
of a system. This condition can be the effect of a fault which is a change in the behavior of a system,
or part of it, from the behavior that was set at design time. This implies that everything that cannot be
accounted for as the effects of a fault should be blamed on an incorrect design, which appears to be an
overall cause of failures. By considering the temporal dependency of a fault, three classifications have
been proposed by the safe process community: an abrupt or stepwise fault, an incipient or drift-like fault,
and an intermittent or random fault (Blanke et al., 2006).

Faults can occur in the proper self system or in the accessory devices, as are sensors, actuators, or
protection systems. The fault’s origin can be diverse, including human error. On the other hand, by
considering that automatic control systems comprehensively integrate information about processes, it is
understandable that this discipline began in the eighties to design supervision systems through software
(Himmelblau, 1978). The International Labor Organization, an agency of the United Nations in charge
of labor problems, reports that 70% of industrial accidents are caused by human error.

Considering that process safety covers various fields of knowledge, from its origins, the technical
committee T6.4 SAFEPROCESS of the International Federation of Automatic Control made efforts to
standardize the terminology used in the publications and achieve common languages independent of
the application. This fact motivated the creation of the terms: Fault Detection, Fault Isolation, Fault
Diagnosis, Fault Tolerant Control, and others. In the Glossary of this monograph, readers can consult the
relevant definitions taken from the book by Blanke et al. (2006).

To summarize, the control theory, the development of artificial intelligence, and the low cost of digital
devices motivated the search for automatic diagnosis techniques for critical systems (Chow and Will-
sky, 1984; Isermann, 1984; Frank, 1990). This allows the possibility of developing fault detection and
isolation (FDI) algorithms with a low cost for diverse applications, such a the automotive industry, med-
ical devices, and household goods. According to Venkatasubramanian et al. (2003), three large groups
of FDI methods emerged based on historical data and qualitative or quantitative models. On the other
hand, artificial intelligence is now another field that is very active in diagnostic problems, which has
enriched the discussions and the solution options for the diagnosis problems. Reiter (1987) and de Kleer
and Kurien (2003) tackled the problem from a logical reasoning perspective, and the failure events were
rated as suspect or declared. The reader interested in a detailed historical evolution of the safe process
can consult the references given in Verde et al. (2013).

One possibility in diagnosing the system state and improving security is to use physical redundancy:
to double or triple devices. In addition, by vote, one detects the faulty component. This solution is costly.
By replacing hardware with models and algorithms, diagnosing the state of the elements, is preferred.
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Fig. 1.1: Coherence principle where fault f (t) and perturbation f̄ (t) affect the process and the model
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This type of diagnosis is denoted analytical redundancy to distinguish it from the physical case. This
concept can be generalized to a redundant structure by software if two different ways to describe
the system with similar behaviors in normal conditions exist. One form corresponds to physical system
measurements and the other to the statement of the health system under study. Thus, both descriptions
are compatible with health conditions, and, if a fault is present in the physical system, both descriptions
are incoherent. Thus, the structure of the redundancy principle shown in Fig. 1.1 is the central key of a
diagnosis task, and the model could be qualitative, quantitative or a data set. It is important to remark
that in some applications, physical redundancy continues to be a security requirement formally legislated
by international agreements as in aeronautical applications, where five or six computers coexist with
independent power sources for each actuator and many redundant sensors from different manufacturers
(Goupil, 2009; Muenchhof et al., 2009).

Maintaining a high level of safety, performance and reliability is essential for detecting prompt system
errors, component faults, abnormal operation and unexpected events (Verde et al., 2013). This fact in-
cludes the knowledge of the cause and its severity, so the operator together with the supervisory control
and data acquisition (SCADA) system can take corrective actions. Thus, for economic and social reasons,
it is necessary to improve and propose control technologies. This novel technology named fault-tolerant
control (FTC) allows reducing incidents, accidents, and the suspension of critical services. By consid-
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ering that the common objective of an automatic control system is to satisfy good performance and
efficiency, measured by the quality and quantity of the product, and if safety specifications are included
in the operation of the system, it now becomes intelligent.

Therefore, innovative FTC algorithms must correct errors produced by a fault. This work could be
done through self-control if it is robust regarding the fault or with a loop modification. The change could
be by rescheduling the control loop or by process reconfiguration. In the worst case, the operator can
decide to shut down the system, for safety reasons.

Consequently, the fault detection and isolation, together with tolerant control in real-time are signif-
icant requirements of current control technologies, which must alert operators and managers as soon
as possible about deteriorated, abnormal conditions and at the same time hold a safe control. This new
paradigm can be called resilient control because it has the ability to recover from fault effects.

Cyber-physical systems are impacted our society, leading to the establishment of new services in
diverse applications. This type of system can be considered a new generation of digital technologies
involved in the integration and inter-dependencies of the cyber and physical world as a combination
of facilities, equipment, procedures, communications, and computational elements to provide services.
These systems have generated new challenges in the field of safety systems, including fault and attack
tolerant control. The reader interesting in this specific topic can read the survey written by Cao et al.
(2020).

1.2 Fault detection and tolerant control

1.2.1 On-line supervision

Advanced integrated SCADA systems aim to operate the global process with satisfactory performance
in nominal conditions and in its diverse operating modes, including start, stop and fault conditions. The
traditional mechanism for fighting the fault modes is through protection, such as fuses, floats, one-way
valves, and handbrakes. This form is valid only for short faults and the avoidance of damage propagation.

Since possible fault effects can range from total loss or stoppage of a process to a simple operation
point modification, the fault diagnosis and its management is a challenging task. For example, a steel
mill outage costs more than 80000 USD per hour, which justifies the effort to integrate diagnostic tasks
with the fault-tolerant control. Figure 1.2 shows the organization with the diverse functions that integrate
an advanced supervision system. The supervision is performed through a set of tasks that can be exe-
cuted asynchronously depending on the current situation. For industrial conditions, the design of a fully
automated supervisor is a challenging task and requires well-known process behavior. Moreover, one
must remember that a complex system has hundreds of variables that overload operators and pilots, pro-
duce stress and lead to incorrect decisions. This condition is known as a cognitive overload (Bainbridge,
1983). Today, the implementation of a supervisory system through edge computing networks and clouds
enables a reduction of the operator workload.

The alarms in the diagnosis framework are considered discrete events activated if a variable or func-
tion exceeds certain limits. This is the usual information for a monitoring application. Figure 1.3 allows
us to explain the alarm activation as a function of thresholds that delimit the acceptable value set for each



1 Introduction 5

Control
Algorithms Process

Interfaces

Operators

Safety
Monitoring

Measured
Data

Alarms, Historic
Synoptic

Control
Aid

Suspected
Component Diagnostic

Measured
Data

Automatic Stop
Reconfiguration

Fig. 1.2: Monitoring scheme with advance supervision tasks

Fig. 1.3: Top graphic: Time evolution of the variable V (t) where the red lines indicate thresholds.
Bottom graphic: discontinuous signals denoted A(t) associated with the alarm impulse of V (t)

variable. The system usually operates in normal conditions as long as the variable V (t) is between the
thresholds, marked by dotted red lines. When, it exceeds them, however, either by an overly low or high
value, an alarm is generated, which is shown at the bottom of the figures as pulses that are denoted by
A(t).
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1.2.2 Diagnosis process

The diagnosis process is frequently performed in stages. In general, the inputs of the diagnosis algorithm
are the measurements of the system under study, and two families of diagnostic systems are available.
Figure 1.4 describes the two main procedures for the design of a FDI algorithm a) indicates the steps
for the methods based on mathematical models of the systems and the track b) displays the process
for signals and data-driven methods. In a practical application, the engineer in charge of the supervisor
design selects the appropriate one, according to the system knowledge, the fault modes, and the avail-
able sensors. For sequence a), a fault is first detected from the incoherence of the mathematical model’s
incoherence and data. Thus, the detection signals called residuals allow the symptom generation, and
the isolation or localization of the fault is achieved from the features of the symptom. This stage con-
cludes when the faulty element is identified and how it affects the system. For the option of signals and
data-driven methods, a set of experiments and historical data are collected such that the designer can de-
termine relevant features and attributes of the faults, for instance statistical parameters. These parameters
must be appropriate for the classification or recognition of the faults. This stage is critical for achieving
satisfactory performance in the diagnosis. The last part of the stage is the fault mode classifications, and
diverse tools from the artificial intelligence field can be used for this purpose.

For both types of diagnosis procedures briefly described before, one assumes that the control system is
properly designed and built. Later, the behavior deviates from the nominal and normal conditions caused
by poor maintenance, natural events, exceeded longevity, or sabotage. The term fault-tolerant or robust
system is understood as a system that can cope with some faults while providing its service or at least a
somewhat degraded version of its functionality.

Redundancy
Relationships
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Component

Information
Extraction

Detection Location

Fault-Tolerant
Control

and
Maintenance

Faulty
Component

Classification

Failure Modes
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from Y data
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Data

Fig. 1.4: Diagnosis stages from process measurements by using mathematical, signal, or data-driven
models
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1.3 Structure and monograph content

Specifically, this monograph focuses on methods and applications for detecting, isolating, and identifying
changes in the behavior of dynamical systems and controlled processes. The introduced tools are based
on qualitative and quantitative models, historical data, and rule-based information. Thus, the book’s
content will be a helpful reference for newcomers to the applications of fault detection and isolation and
fault-tolerant control (FDI-FTC) as well as for those engineers and researchers interested in available
new tools developed for improving the safety of dynamic systems.

Chapter 2 addresses the design of a control system for the new generation of computer numerical
control (CNC). The main contribution is the system optimization based on the Markov Decision Process
(MDP). The process consists of four modules, namely: data acquisition, cutting tools, surface roughness,
and planning. Thus, the designed intelligent control guides the actions of the operator in peripheral
milling processes. Practical results show the performance for the main parameter Ra, which corresponds
to the surface roughness.

For academic and teaching purposes, Chapter 3 deals with the fault diagnosis technology by using
generalized Hamiltonian models. Specifically, the problem of fault isolation in actuators and sensors is
solved with a bank of observers for a nonlinear 2-DOF helicopter scale Hamiltonian nonlinear model.
The whole diagnosis program is implemented to be tested as a real-time embedded system. Experi-
mental results show the effects of sampling time, control and fault sensitivity. The diagnosis system is
implemented at the automatic control laboratory of the Universidad Autónoma de Nuevo León.

By considering the EDF-1000 distillation pilot plant, Chapter 4 presents a fault detection algorithm
for a boiler system of a column described by a Takagi-Sugeno fuzzy model. For the residual generation,
sliding mode observers are used. Specifically, the considered faults are part of the buck-boost electric
converter, which regulates the power through the duty cycle of the power electronics. The chapter ends
with some experimental results where load fault, input voltage variations, and a combination of defects
are detected through the residuals.

Chapter 5 examines the problem of the remaining useful life (RUL) prediction of physical infras-
tructure. This new issue is motivated by the practical necessities for establishing maintenance policies
strategies since the RUL features are time varying. In particular, a novel adaptive prognosis method is
introduced by using a simple performance metric. The measure periodically considers the RUL predic-
tion and maintenance planning. The procedure is applied to a commercial simulator of an aerospace-
propulsion system, and the results show satisfactory performance.

The last three chapters address diverse problems, all related to the leak detection and localization in
pipelines. In particular, Chapter 6 proposes a leak localization method for water distribution networks
using k-NN classifiers with a nonlinearly transformed pressure residual as a feature. The main property
of the transformation is the residual direction extraction, separating it from its magnitudes. Simulated
results with EPANET as shown for the Hanoi network and also physical data from the Madrid network
are used to test the procedure.

Since the leak diagnosis systems in pipelines are included as supplements of the actual SCADA sys-
tems, Chapter 7 describes a smart SCADA system that provides for as part of its tasks a real-time al-
gorithm for the sequential leaks location of a 162 m prototype hydraulic pipeline. The prototype is
instrumented with upstream and downstream pressure sensors to regulate the operation of the line un-
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der diverse operation conditions. The hardware and software infrastructure is designed specifically at
UNAM as a test bank for the study and design of fault diagnosis technologies. Note that the SCADA
system with the embedded fault diagnosis system is implemented in LabVIEW and the results are cap-
tured in real-time by using an industrial portable PC.

The success of a leak diagnosis is strongly dependent on the system model that could not be appropri-
ated for computational implementation tasks, and the models frequently involved uncertain parameters.
Chapter 8 addresses the problem of looking for computational models that can be useful for fault diag-
nosis and tolerant control and, at the same time simplifying the estimation online of critical parameters.
For example, a real-time identification procedure is presented, which allows the estimation of the critical
parameters of a power law model for the head loss in pipelines. The identification task is achieved by a
state observer where the state consists in a combination of physical parameters of the line. Experimental
data from the hydraulic test bank introduced in Chapter 7 validated the proposed observer. Moreover, a
simple statistical study with simulated data shows the effect of an uncertainty parameter of the model in
the probability density function of a leak location.
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Chapter 2

Intelligent Control System for High Speed Machining

Antonio Jr. Vallejo Guevara1, Ricardo A. Ramı́rez Mendoza1 and Ruben Morales-Menendez1

Abstract The next-generation of high-speed machining (HSM) systems demand advanced features such
as intelligent control under uncertainty. This requires, in turn, an efficient administration and optimiza-
tion of all system’s resources towards a previously identified objective. This research project presents
an optimization system based on Markov decision process (MDP), where an intelligent control guides
the actions of the operator in peripheral milling processes. The system bases its decisions on prediction
models of the machining process: state of wear of the cutting tool and surface roughness; therefore, an
estimator based on multi-sensors and data fusion will be analyzed. Exploiting intensive experimentation,
databases, models, and detailed procedures generates high precision models. The initial results and the
continuous development based on machine learning (ML) for MDP demonstrate great expectations of
this proposal.
Keywords: Markov decision, Process optimization, High speed machining, Milling process, Artificial
neural networks

2.1 Introduction

HSM requires high magnitudes of spindle speeds, feed rates, as well as high acceleration and decelera-
tion rates. Simultaneously, it is subjected to stringent restrictions such as low machining cost and time,
and high precision and accuracy. Intelligent machines can meet the strong competitiveness demanded by
new businesses. Intelligent CNC machines convey advanced features such as prediction of operations, re-
duction of setup time, detection of cutting tool condition, acquisition of knowledge, and inferences from
incomplete information Balic (2006). However, process planners still have great difficulties for measur-
ing on-line process data on machining processes such as cutting tool wear condition (CTWC) and surface
roughness (Ra) Jawahir and Wang (2007). An intelligent control system for HSM is described, exhibiting
several desirable features such as: prediction of key variables (Ra and CTWC), definition and adaptation
of optimal cutting conditions and operation policy, and an objective function-based optimization. Special
emphasis is placed on Ra and CTWC modeling due to the resurgence of some ML algorithms, the Indus-
try 4.0 and the industrial Internet of things (IIoT). A novel mathematical framework for fault diagnosis

1Tecnológico de Monterrey, Av. E. Garza Sada # 2501 , e-mail: avallejo@tec.mx, ricardo.ramirez@tec.mx and rmm@tec.mx

��



12 Antonio Jr. Vallejo Guevara, Ricardo A. Ramı́rez Mendoza and Ruben Morales-Menendez

(i.e. cutting tool wear condition and surface roughness) is proposed as a key support of intelligent control
under uncertainty for HSM systems.

2.2 State of the Art

2.2.1 High-Speed Machining

Several optimization methods have been developed around process planning systems for machining pro-
cesses. For example, a procedure for tool selection in milling operations was proposed in Carpenter and
Maropoulos (2000). First, several alternatives of cutting tools were considered by an iterative method.
Then, cutting data was refined by a set of technological constraints, including tool life, surface finish-
ing, machine power, and available spindle speeds and feed rates. Finally, three user-defined optimization
strategies were available (minimum cost, maximum production rate, or predefined tool life).

In Dereli et al. (2001), a cutting parameters optimization system, based on a two-stage methodology,
was introduced. First, a tentative number of passes and depth of cuts were determined through the so-
called volume sectioning method. Then, the cutting speed and feed rate for each pass were optimized
by using genetic algorithms (GA). A second-order mathematical model was developed for predicting the
parameter Ra as a function of the cutting speed, feed rate, depth of cut, and nose radius of the cutting
tool in turning operations Suresh et al. (2002).

Based on previous work by Dereli et al. (2001), an algorithm for the selection of optimal cutting con-
ditions was proposed in Mursec and Cus (2003), allowing the calculation of several cuts required and
machining time. Zuperl et al. (2004) presented a new hybrid optimization technique based on the maxi-
mum production rate criterion and ten technological constraints. A general algorithm, called OPTIS, was
used in conjunction with artificial neural networks (ANN) to solve the complex optimization problem.
OPTIS selects the optimum cutting conditions (based on minimum machining costs) from commercial
databases. ANN ensured an efficient and fast selection of the optimum cutting conditions and processing
of available technological data. Compared to the GA and linear programming approaches, this hybrid
optimization technique improved the optimal cutting parameters selection by around 30.41% and 20%,
respectively. Based on OPTIS, Zuperl et al. (2006) proposed an adaptive neural controller for on-line
optimal control of a milling process.

A two-phase optimization strategy based on the Taguchi dynamic characteristic theory was proposed
in Tzeng and Chen (2005). Experimental results showed that the machining time could be reduced with
low process variance and increased robustness of the CNC milling processes.

Yih-Fong (2005) presented a Taguchi method coupled with principal component analysis for the op-
timization of HSM milling processes. Optimal process conditions were selected for producing the best
dimensional precision and accuracy, Ra, and CTWC. The selected control factors were: milling type,
cutting speed, feed per tooth, film material, tool material, number of teeth, rake angle, and helix angle.
Based on the cutting parameters optimization system an index for the inter-correlated multiple perfor-
mance features of a HSM milling process was computed, obtaining optimized settings.

A genetically optimized neural network system that selects the optimal cutting conditions for milling
processes was proposed by Tansel et al. (2006). GA was used to maximize the rate of metal removal and
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minimize the Ra based on different ANN models. A mathematical model based on both material behavior
and machine dynamics were described in Palanisamy et al. (2007).

Mukherjee and Ray (2006) reviewed different optimization techniques in metal cutting processes, dis-
cussing a general framework. Reviewed optimization methods currently applied were: Taguchi method,
response surface methodology (RSM), Mathematical Iterative Search Algorithm, GA, and simulated an-
nealing methods.

In Kant and Sangwan (2014) the authors presented a multi-objective predictive model for the mini-
mization of power consumption and Ra during the machining of AISI 1045 steel. The predictive model
used grey relational analysis coupled with principal component analysis and response surface methodol-
ogy RSM. The statistical significance of the proposed predictive model has been tested by the analysis of
variance. The obtained results indicate that feed is the most significant parameter followed by the depth
of cut and cutting speed to reduce power consumption and Ra. The results provide an improvement of
6.59% in power consumption and 2.65% in Ra over the best experimental run.

In Karabulut (2015) milling tests were performed based on the Taguchi DoE method using L18 orthog-
onal array and determined the optimal cutting parameters for Ra and cutting force. The analysis results
showed that material structure was the most effective factor on Ra and feed rate was the dominant factor
affecting cutting force. Ra values were significantly improved by between 196% and 312% in milling
Al2O3 particle-reinforced Aluminum alloy composite compared to AA7039 Aluminum. ANN was able to
predict the Ra and cutting force with a MSE equal to 2.25% and 6.66%.

In Karkalos et al. (2016) models for the prediction of the Ra in milling of Ti-6Al-4V ELI Titanium
alloy were developed. A set of experiments based on Box Behnken Design for a three factor and three
level central composite design concept was conducted. Depth of cut, cutting speed and feed rate were
selected as input parameters and Ra was measured as output. The MSE and the correlation coefficient
were determined to be 8.6⇥ 10�3 and R2 = 0.97, respectively; for ANN models were 2⇥ 10�3 and
R2 = 0.98, for the test group of the optimum model. Almost all of the previous works are usable within
narrow operating conditions only.

In Yang et al. (2019), the authors developed an integrated prediction model based on trajectory similar-
ity and support vector regression, which can predict the tool wear and life. The time domain and wavelet
analysis are carried out. Five eigenvectors were selected as the input vectors of the prediction model
by studying the correlation between 45 characteristic quantities and the tool wear. The relative errors
of flank wear value prediction accuracy in the stable stage of the sample tool were above 88% and the
prediction accuracy of the stable stage of Tool 1, 2, and 3 was 88.5%, 87.5%, and 90.5% respectively,
by using this integrated prediction model. In Hoang et al. (2020), the authors presented an intelligent
control system for self-adjusting on-line cutting condition for HSM by considering the tool-wear amount
to keep the machined product’s quality in allowable limit. The empirical analysis of variance and ANN
were used. The analysis of variance was used for generating the empirical functions which were used
as the boundary condition as well as constraint evaluation. The ANN was used for generating the new
optimal cutting condition.
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2.2.2 Surface Roughness (Ra) Modeling

Surface roughness (Ra) has been subject of research for years where four major approaches have been
pursued Benardos and Vosniakos (2003): (i) Machining theory; (ii) Experimental investigation; (iii) De-
sign of experiments (DoE); and (iv) Artificial intelligence (AI), a brief review of these is presented next.

Machining theory. It considers geometric and analytical modeling. Geometric modeling is based on
the geometrical motion of a metal cutting process regardless of the cutting dynamics. Some geometric
models for turning operation are shown in Boothroyd and Knight (2006). In Lee et al. (2001), a ge-
ometric model and a simulation algorithm were developed, calculating cutting parameters, cutter and
work-piece geometry, vibration signals, and run-out parameters. Finally, Sai and Bouzid. (2005) used an
experimental design with two factors (cutting speed and feed per tooth) and five levels to validate the Ra
model.

Experimental investigation approach. It requires a full range of experiments handling the most rel-
evant factors, and the results are used to investigate the effect on the observed quality characteristic. In
Barber et al. (2001), the Ra was computed as a quadratic function of tool service time, and the major pa-
rameters involved were tool geometry and CTWC. In Abouelatta and Madl (2001), mathematical models
for predicting Ra were derived based on cutting parameters and vibration signals.

Design of Experiments (DoE) approach. The RSM and Taguchi techniques for DoE are the most
widespread methodologies for Ra prediction. In Ozcelik and Bayramoglu (2006), a statistical model was
used for estimating Ra in high-speed flat milling, where the parameters involved were the total machining
time, depth of cut, step over, spindle speed and feed rate. Similar works are presented in Abouelatta and
Madl (2001), Özel and Karpat (2005) and Morales-Menendez et al. (2005). In Subramanian et al. (2014)
a mathematical model was developed to predict the Ra in terms of machining parameters such as radial
rake angle, nose radius of cutting tool, spindle speed, feed rate and axial depth of cut. The authors
applied the RSM to define the DoE; the Ra was computed with a second-order quadratic model, which
was obtained by applying a regression procedure.

Artificial Intelligence approach. ANN, GA, Bayesian networks (BN) and Fuzzy Logic are typical
approaches used in Ra prediction. In Azouzi and Guillot (1997) the ANN, statistical tools, and sensor
fusion techniques were combined to estimate Ra and dimensional deviations during turning process
(on-line). The DoE considered the following factors: feed, speed, depth of cut, coolant, tool wear, and
material properties. A surface recognition system for Ra prediction was proposed by Tsai et al. (1999),
where an ANN model was built by using the spindle speed, feed rate, depth of cut and the vibration
average per revolution. Also, in Benardos and Vosniakos (2003) it was presented an ANN model able to
recognize Ra in a face-milling process.

In Khorasani and Soleymani-Yazdi (2017), a general dynamic Ra monitoring system in milling op-
erations was developed. Based on the experimentally acquired data, the milling process was simulated.
Cutting parameters (i.e., cutting speed, feed rate, and depth of cut), material type, coolant fluid, X and Z
components of milling machine vibrations, and white noise was used. First neural milling process model
was developed with 6 inputs, 12 neurons in hidden layers and 3 outputs. The neural milling process
model was used to estimate two components of vibrations and Ra. Later, a neural simulator model was
developed with 7 inputs, 14 neurons in hidden layers and 1 output, and it was used to predict Ra. The
average correlation factor was computed for training/testing steps: 99% and 99.7% respectively.
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Wu and Lei. (2019) proposed an ANN model to predict the Ra of S45C steel in milling process. The
input features to the ANN model were feed per tooth, cutting depth, clamping torque of vise, the removed
volume accumulation, and the extracted features from the vibration signals (RMS, kurtosis, skewness,
and the envelope signals on the three-axis).

2.2.3 Cutting Tool Wear Condition (CTWC) Modeling

Monitoring the CTWC is very important in all metal cutting processes. There are two monitoring systems:
direct and indirect. Direct monitoring systems are not easily implemented because they need ingenious
measurement methods. Therefore, indirect measurements are required for the estimation of the CTWC,
and different sensors must be used for monitoring and diagnosing the CTWC. There are important con-
tributions to assess the CTWC by applying indirect methods: ANN, BN, and hidden Markov Models
(HMM).

Artificial Neural Networks. ANN are well known as pattern recognition engines and robust classi-
fiers. ANN has been used successfully to combine inputs from multiple sensors for CTWC. In Haber
and Alique (2003) was developed an intelligent supervisory system for CTWC prediction using a model-
based approach. First, an ANN model was trained considering the cutting force, the feed rate, and the
radial depth of the cut. Secondly, the residual error obtained from the measure and predicted force was
compared with an adaptive threshold to estimate the CTWC. This condition was classified as new, half-
worn, or worn cutting tool.

In Saglam and Unuvar (2003), the authors worked with multilayered ANN for the monitoring and
diagnosis of the CTWC and Ra. The obtained success rates were of 77% for tool wear and 80% for Ra.

In Javed et al. (2012) an improved-extreme learning machine (Imp- ELM) algorithm was developed
for predicting the CTWC of a high-speed CNC machine. The ELM approach was evaluated using the
force-based approach to build a prediction model. The implemented ANN architecture in the Imp-ELM
approach was defined by four inputs, 15 to 25 neurons in the hidden layer, and one neuron in the output
layer. The experimentation was made in a high-speed CNC milling machine, the work-piece material
was Inconel-718, and three cutting tools of tungsten carbide with 6 mm ball-nose/3-flutes were used in
the milling operation. The result was not good enough when the unknown data was presented.

In Escajeda-Ochoa et al. (2019) a new proposal for monitoring the CTWC was developed by using
ANN with autoencoders. The recorded signals (vibration, cutting forces, and autoencoders during the
machining of aluminum workpieces were pre-processed to obtain the MFCC. The raw signals were
recorded during the machining process by using four CTWC: New, Half-New, Half-Worn and Worn.
The processed features of the process signals were used to build a stacked space autoencoders neural
network. During the training of the ANN, important parameters that define the sparsity, regularization,
and impact of the sparsity regularizer were adjusted to achieve optimal training avoiding the under-fitting
and over-fitting. The proposed methodology allows identification of TWC with an accuracy of 99.63%.

In Guo et al. (2022), a novel Multi-scale Pyramid Attention Network (MPAN) was proposed which
can not only accurately monitor tool wear, but also access the interpretability from aspect of model
design and feature extraction. The MPAN was constructed according to the periodic characteristic of
the two sensory signals, cutting force and vibration, which improves the ability to characterize multiple
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frequency bands and maintains the periodic meaning of the features to a large extent. The MPAN consists
of following components: dual-frequency decomposition, dual-frequency attention, pyramid attention
and multi-layer perceptron. In two HSM experiments with multiple milling conditions, the mean absolute
prediction error of MPAN was 3.8% and 11.2% respectively, which shows robustness against tool types,
milling parameters, and time-varying signals.

Bayesian Networks. BN, also known as belief networks, belong to the family of probabilistic graphi-
cal models. BN combine principles from graph theory, probability theory, computer science, and statis-
tics. In Dey and Stori (2004), a monitoring and diagnosis approach based on a BN was presented. This
approach integrates multiple process metrics from sensor sources in sequential machining operations
to identify the causes of process variations. It provides a probabilistic confidence level of the diagno-
sis. The BN was trained with a set of 16 experiments, and the performance was evaluated with 18 new
experiments. The BN diagnosed the correct state with a 60% confidence level in 16 of 18 cases.

Abellán et al. (2006) proposed an indirect monitoring multi-sensor system for both Ra and CTWC
using BN techniques. In Allen (2006) a CTWC monitoring system for milling operation was developed
based on the current signal of the spindle motor as the fault indicator signal. Wavelet time-frequency anal-
ysis method was employed for the signal processing step. Gaussian process regression, support vector
regression, Bayesian rigid regression, nearest neighbor regression, and decision tree methods were im-
plemented to learn a model between tool wear behavior and signal indicators. The decision tree method
and Bayesian rigid regression algorithms showed accurate results with accuracy of up to 91.6% for
CTWC with a promising ability to tolerate and work under changing operating conditions.

Hidden Markov Models. These models are referred to as Markov sources or probabilistic functions of
Markov chains. HMMs have proved to be indispensable for a wide range of applications in such areas as
signal processing, bioinformatics, image processing, linguistics, and others, which deal with sequences
or mixtures of components.

In Atlas et al. (2000), the authors used HMMs for the evaluation of tool wear in milling processes. The
feature extraction from vibrations signals was the root mean squared, the energy, and derivative. Two
CTWC were defined: worn and no-worn condition. The reported success was around 93%.

Fish et al. (2003) proposed a HMM-based classifier that models the dynamics of cutter wear and the
dynamics within a cutting pass in a milling application. Each HMMs state corresponds to a range of
wear, allowing to produce a quantized estimate of cutter wear.

A proposal to exploit speech recognition frameworks in monitoring systems of the CTWC was pre-
sented in Vallejo-Guevara et al. (2005). Also, Vallejo et al. (2006) introduced a new approach for online
monitoring the CTWC in face milling. The proposal was based on a continuous HMMs classifier, and
the feature vectors were computed from the vibration signals between the cutting tool and the work-
piece. The feature vectors consisted of the mel frequency cepstrum coefficients (MFCC); the success to
recognize the CTWC was 99.86% and 84.55%, for the training/testing dataset.

The main contributions of this research are:

• The models that predict Ra and CTWC consider five aluminum alloys widely used in the aeronautical
and automotive industries. The models reported in the consulted research usually use a single material.

• In the works reported for milling operations, the DoE only considers straight paths or face milling.
This work includes a new parameter that allows defining concave, convex, and straight paths, which
are common in peripheral milling operations of molds and a great diversity of parts.
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• Regarding the CTWC, the research only reports two tool wear conditions (new, worn) for a specific
tool geometry. The models that predict the CTWC consider four states of tool wear and are evaluated
for five different diameters of end millings.

• Finally, the intelligent control system allows predicting the cutting parameters (off-line) to obtain the
desired Ra, considering the different materials and tools. In HSM, it is difficult to have a database with
recommendations for specific cutting parameters. Usually, they are determined by trial and error.

2.3 Experimental Set Up

Experiments were carried out in an industrial HSM center the HS-1000 Kondia, featuring a 25 KW drive
motor, 3 axis, 24,000 rpm maximum spindle speed and a Siemens Open Sinumerik 840D controller, and
several sensors were installed in the CNC machine as shown in Figs. 2.1- 2.2.

Two data acquisition boards acquired the signals with sample rates of 40,000 and 1,000,000, respec-
tively. A milling process was carried with different aluminum alloys, several cutting tools 25o helix
angle, and 2-flute, Sandvik Coromant and several geometries (concave, convex or straight path), Fig.
2.2. Table 2.1 defines the variables and their description used in the DoE.

Table 2.1: Definition of variables

Variable Description Variable Description
Vf Feed rate HB Brinell Hardness
n Spindle speed Ra Surface roughness
ap Axial depth of cut Rap Predicted Ra
ae Radial dept of cut Rad Desired Ra

Curv Curvature of the geometry VB Flank wear in cutting tools
Dtool Cutting tool diameter Cc Cutting conditions: n, Vf , ap, ae

fz Feed per tooth Pc Cutting parameters (cutting tool, workpiece hardness, etc)
Fy y-axis workpiece cutting force PG Geometric parameters (cutting tool, path of the cutting process).

2.4 Experimental Database

Most research work related to Ra and CTWC only considers a specific combination of tool and work-
piece material. However, several authors have pointed out the importance of building databases with
different materials, cutting tools, and a broader domain in the machining process. In the mold/die in-
dustry, the peripheral milling process is a crucial cutting process; the geometric path can be defined as
a simple straight line, concave, or convex curvature. Furthermore, in the aeronautic and automotive in-
dustries, different aluminum alloys are used according to multiple requirements and applications of the
workpieces.

The several groups of factors that affect Ra must be considered. The first group is the cutting condi-
tions (cutting speed, feed rate, axial depth of cut, etc.); the second group is the geometry of the cutting
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Fig. 2.1: Data acquisition system. The monitoring system is integrated by: (1) Supporting ring, (2a) Brüel
& Kjaer accelerometers (charge sensitivity: 98 +/� 2 pC/g, resonant frequency: 16 KHz & 42 KHz),
(2b) PCB piezotronic accelerometers (x-axis & y-axis, sensitivity: 10 mV/g; range frequency: 0.3520,000
Hz), (3) Charger amplifiers, (4) Conditioning amplifier, (5) Kistler 3-component forces Dynamometer
(force range: -7.5 pC/N in x-axis and y-axis and -3.5 pC/N in z-axis, natural frequency: 3-5 KHz), (6)
Kistler charger amplifier, (7) NI data acquisition card, (8) Kistler Piezotron AE (sensitivity: 700 V/m/s,
freq. range: 50-400 KHz), (9) AE Piezotron coupler. (10) CompuScope card, and finally, (11) a HMI
based on LabView for real time control and monitoring operations was developed.

tool (tool, diameter, helix angle, edge radius, number of flutes, etc.); the third group is the work-piece
material (hardness, ductility, etc.) and path of the peripheral milling process (concave, convex or straight
path); the last corresponds to the uncertainty of the process due to the variations in machine vibrations
and repeatability, work-holding devices, and other factors. Other variables are less critical or can be
controlled (coolant, thermal conditions, humidity, and so on).

A process characterization (screening) design was required in the first experimental stage to compute
the critical variables that affect the Ra. The DoE was calculated by considering eight factors, two levels,
1/8 fraction, 32 runs, zero center points, and four replicates. The selected factors and levels are shown in
Table 2.2.

The next step is to apply an analysis of variance for analyzing the significance of factors and/or model
terms that address the multiplicity of the tests with the experimental results. The final factors that were
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Fig. 2.2: Accelerometers and AE sensors installed on a ring fixed to the spindle of the CNC machining
center.

Fig. 2.3: Cutting tools (Sandvik Coromant 8,10,12,14,16 mm) and several geometries (concave, convex,
and straight path).

Table 2.2: Factors and levels are defined for the screening design.

Factors Low level High level Units
fz 0.04 0.13 mm/rev/tooth
Vc 500 850 m/min
ap 5 10 mm
Dtool 12 16 mm
ae 1 5 mm
HB 65 145 HB
R 20 40 mm
I/C Convex Concave dimensionless

selected from this analysis are: fz, Dtool , ae, HB, R, and I/C. The last two factors are fused into a new
factor called curvature (Curv). This factor is computed as the inverse of the radius of the work-piece
geometry, and the curvature type is defined by its sign: positive for the convex path and negative for the
concave path.

Then, RSM is applied to define the runs of the experiments. RSM is recommended for modeling and
analyzing models with several factors that significantly influence a response. It is based on the cen-
tral composite design for the design of experiment matrices (Allen, 2006; Montgomery, 2001). Central
composite design consists of a 2k�1 fractional factorial of resolution with nF runs and nc center runs.
The defined parameters to apply RSM were the following: rotatable central composite design, with 16
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points (2k�1 = 16, k = number of factors) on cube, 10 points outside of cube, six central points, a = 2
as the radius of the sphere, 32 runs, and four replicates. Table 2.3 shows the factors and levels for the
experiments.

Table 2.3: Factors and levels of the experimentation with RSM

levels fz
mm
rev Dtool mm ae mm HB HBN Curvature mm�1

-2 0.025 8 1 71 -0.05
-1 0.05 10 2 93 -0.025
0 0.075 12 3 110 0
1 0.1 16 4 136 0.025
2 0.13 20 5 157 0.05

The selected aluminum alloys were: 5083-H111, 6082-T6, 2024-T3, 7022-T6, and 7075-T6. The cut-
ting tool diameters (Sandvik Coromant) were: 8, 10, 12, 16, and 20 mm. The workpiece size was 100
mm x 170 mm x 25 mm, and it was designed to allow the machining of four experiments, as seen in Fig.
2.4. The experimentation considered the following steps:

1. Run the 32 experiments with a sharp cutting tool.
2. Record the process variables and measure the Ra for the four replicates.
3. Machine harder aluminum alloys until the cutting tool reaches specific flank wear. The following

CTWC was defined as the half-new cutting tool.
4. Run another set of experiments with the half-new CTWC.
5. Repeat steps 1, 2, and 3 by using half-worn and worn CTWC. The final CTWC was defined until

Ra presents considerable damage or the cutting tool reaches the maximum tool-life criterion [ISO
8688-2:1989, 1989].

During the experimentation with the four different CTWC, the following process variables were
recorded:

• Acceleration signals in x and y-axis directly on the workpiece (Accx,wp, Accy,wp).
• Acceleration signals in x, y, and z-axis directly on the CNC spindle (Accx,sp, Accy,sp, Accz,sp)
• Force signals in x, y, and z-axis.
• AE signals in the spindle and table of the CNC machine.
• The Ra was measured in a specific area of the machining surface at the end of each test.

The full database is available online with all the measurements and the corresponding combinations
of cutting parameters, as well as the Ra values for the different CTWC. In addition, authors make the
experimental database available [ request it via : avallejo (at) tec (dot) mx].

2.4.1 Surface Roughness Database

The quality of the machined surface is characterized by the accuracy of its manufacture concerning the
dimensions specified by the designer. Therefore, Ra is important because it defines if a workpiece is
accepted or rejected after the machining process. Several parameters describe the Ra: Rz, Rt, Rq, and
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Ra. The most crucial parameter is Ra; it is defined as the arithmetical mean of the absolute ordinate
values within a sampling length, Ra = (1/l)

R l
0 |z(x)|dx, Ra was measured with a portable Surfcom type

130A. The sampling length and evaluation length were 0.8 and 4 mm. An area was specified for the
measurement of Ra, Fig. 2.4 (red circle). The procedure used to measure the Ra is depicted in Fig. 2.5.

Fig. 2.4: Identification of the area for measuring the Ra in the specimens

Stylus transducer

LCD panel and printer

Stylus Tip

Portable compact unit

Fig. 2.5: (a) Measurement of Ra with the stylus tip of the surf com 130 A; (b) Register and printer of
the information; (c) PC to store the information; (d) Image of the machined surface.
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Additional to the computed Ra, the different signals were processed by using the MFCC technique
Vallejo and Morales-Menendez (2010) to obtain seven Cepstrum Coefficients, and ANN models were
used to on-line predict Ra, during the machining process, Vallejo-Guevara et al. (2009c).

2.4.2 Cutting Tool Wear Condition Database

During the machining process of the DoE, the machining time, the volume of the removal metal, and the
number of cycles of the cutting tools were computed. Also, the flank wear evolution was measured during
the experimentation. Figure 2.6 shows the equipment used to measure the flank wear of the cutting tool.
The tool-life criterion was defined according to the international standard ISO-8688-2, Tool life testing
in milling. Part 2: End milling. The tool life criterion was considered based on the flank wear of the
tool edges. The uniform flank wear (V Bavg) represents the average value of the two cutting tool edges,
and the maximum flank wear (V Bmax) corresponds to the higher value found in the cutting edges. The
recommended values of the flank wear are the following: (1) Uniform average wear of 0.3 mm over all
the edges of the cutting tool, and (2) Maximum wear value of 0.5 mm on any individual edge or tooth of
the cutting tool. The flank wear values considered to classify the four CTWC are shown in Table 2.4.

Fig. 2.6: Measurement of Ra with the stylus tip of the surf com 130 A. The information was recorded
and printed in the LCD panel and printer, and stored in a PC.

Table 2.4: CTWC and the flank wear observed during the experimentation

CTWC Uniform flan wear (mm)
New 0VB < 0.07

Half-new 0.07VB < 0.1
Half-worn 0.1VB < 0.18

Worn 0.18VB < 0.45
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Two approaches were used to monitor and diagnose the CTWC: HMM and ANN, both approaches
used the following information to build the models.

1. The five cutting parameters: fz, Dtool , ae, HB, Curv.
2. The seven Cepstrum Coefficients of the different process signals (acceleration in the workpiece, ac-

celeration in the spindle, the cutting forces, and AE in the spindle and table).
3. The CTWCs: New, Half-new, Half-worn, and Worn.

Considering all the experiments carried out for the four states of the tool, there are 441 data for each
process signal. Therefore, the input data must be grouped in a 441⇥12 matrix, and the output data must
be grouped in a 441⇥4 matrix.

2.5 Intelligent Control System

Several industrial projects had been developed and end with the need of a control system, Fig. 2.7,
Vallejo-Guevara et al. (2005), Vallejo-Guevara et al. (2007), Vallejo-Guevara et al. (2008). This control
system integrates four main modules: (1) data acquisition, (2) CTWC, (3) Ra monitoring and (4) planning
module.

2.5.1 Data Acquisition Module

Based on the data acquisition system, Fig. 2.1, standard filtering was applied to the process variable
signals. Some signals were pre-processed by the MFCC, widely used in speech recognition systems,
Wong and Sridharan (2001); to find particular features of the data (Appendix 1 shows the computing
procedure.)

HS-1000 KONDIAHS-1000 KONDIA
Data Acquisiton Module

Cutting Tool 

 Module
Surface Roughness 

       Module

User

Planning Module

Intelligent Control System

Fig. 2.7: Intelligent Control System with four modules: data acquisition, CTWC, Ra and planning
module
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2.5.2 Cutting tool Module

The CTWC has a direct impact on the final dimensions of the product, Ra and surface integrity. However,
direct monitoring is not easily implemented due to nonstandard measuring methods.

An indirect monitoring approach based on measurement of different process signals was developed
Vallejo-Guevara et al. (2007), Vallejo-Guevara et al. (2008), and Vallejo-Guevara et al. (2005). The
process signals were characterized by MFCC and associated with the CTWC. The CTWC were defined
as: New (0  VB < 0.07 mm), Half-new (0.07  VB < 0.1 mm), Half-worn (0.1  VB < 0.18 mm), and
Worn (0.18  VB < 0.45 mm), where VB is the flank wear according to ISO-8688-2 norm. A HMM
framework was developed to identify based only on the MFCC of the process signals. Additionally, an
ANN model was implemented to classify the CTWC.

2.5.3 Surface Roughness Module

It is also possible to predict Ra during the machining process by applying an ANN model. The ANN
model was built based on cutting parameters ( fz, DTool , ae, HB, Curv) and on-line measurement of
process variables. The MFCC were computed for different process signals, and the ANN model was
defined as Ra=ANN( fz,DTool,ae,HB,Curv,MFCC). Each model was developed for a CTWC, verifying
that the residuals followed a normal distribution statistically validated. An estimator based on multi-
sensor and data fusion provides an improved and robust estimation, Vallejo-Guevara et al. (2009b).

2.5.4 Planning Module

A CNC machining center must consider several intelligent areas, such as, CTWC monitoring, operation
& machine tool modeling and adaptive control, Monostori (2000). The planning module has two main
tasks: computation of the optimal cutting parameters that minimizes Ra (pre-process and in-process),
and computation of the machining policy that minimizes the production cost.

Cutting Parameters (off-line optimization). One of the key tasks of the planning module is the
computation of the optimal cutting parameters before the cutting operation (off-line optimization). Given
a set of variables provided by the operator (Cc, Pc, PG, Rd

a) the surface roughness (RP
a ) is estimated, and

the cutting parameters are optimized with a GA. Left picture of Fig. 2.8 shows the detailed procedure.
Cutting Parameters (on-line optimization). The second key task of the planning module is the com-

putation of the optimal cutting parameters during the machining process (on-line optimization). Consid-
ering some process variables and the on-line estimated VB, the actual Ra (Rap ) is estimated. First, the
difference between the Rap and the desired Ra (Rad) is computed; based on this error and the previous
feed per tooth, the new Ra is re-computed. Finally, the Rap is re-estimated on-line, based on current
process, see right picture of Fig. 2.8.

Machining Policy. The third essential task of the planning module is the optimization of the machin-
ing policy, based on a minimization of the production costs. The policy, which generates guidelines for
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Fig. 2.8: Off-line optimization (left picture) and on-line optimization (right picture) of cutting
parameters and machining policy

the operator is limited to the available universe of variables of this problem (different Aluminum alloys,
cutting tool diameters, and CTWCs).

A methodology based on the MDP, Feldman and Valdez-Flores (2004) was implemented. The key
characteristic of a Markov model is a probability law in which the future behavior of the system is
independent of the past behavior, given its current condition. A formal description of a MDP is as follows:
S = {s1,s2,s3,s4,s5} is a finite set of states of the system. The possible states of the CTWC are: s1, new;
s2, half-new; s3, half-worn; s4, worn, and s5, tool fracture, and A = {a1,a2,a3} is a finite set of actions
that the operator can take. The possible actions are described below.

* a1, no action. An aggressive condition, because the operator uses the cutting tool until to reach the
VB maximum.
* a2, change the cutting tool. A conservative condition, which implies to change the cutting tool when
the CTWC module predicts the worn condition.
* a3, stop the machine and inspect the cutting tool.

P: S⇥A is the state transition probability distribution function. For each action and state of the system,
there is a probabilistic distribution over the states that can be reached after the actions. The function
P(s|s0,a) is defined as the probability of reaching state s starting in-state s0 and given action a. As shown
in Fig. 2.9, the transition matrices were computed by considering the evolution of the cutting tool’s
longevity.
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Fig. 2.9: Four states of the CTWC can be identified. The measured VB is a function of the removal metal.

The tool fracture was included to simulate a random failure of the cutting tool, which can happen
during the machining process. The instantaneous cost function must be defined for each action. Cost
functions are computed by considering: a) the decision cost for a right or wrong action, b) operator
costs, energy cost, and the operator labor, and c) the cost of the cutting tool. The cost function was
defined for all the CTWCs and for each action.

R : S⇥A is a reward function for executing an action in the state s, assigning a real number for each
action in each state of the system. b defines a vector that maps the state space into the action space, that
is, an action function, which assigns an action to each state. These are evaluated by the MDP algorithm
to compute the optimal policy. A stationary policy (p) is a policy that an action function can define. The
stationary policy is defined by the function (b ) taking action a(i) at time n, if S0 = i, independent of
previous states, actions and time-steps. The set of all (decisions) policies is denoted by v. The Expected
Discount Cumulative Cost will be used to compute the optimal minimum cost, see details at Vallejo-
Guevara et al. (2009a).

2.6 Results

A novel mathematical framework for fault diagnosis (i.e. cutting tool wear condition, and surface rough-
ness) is one the most important results. It is proposed as a key support of intelligent control under
uncertainty.

2.6.1 Surface Roughness Modeling

The Ra can be on-line predicted, two different ANN models were proposed for Ra prediction during the
machining process, Fig. 2.10.

Several tests were defined to select the best ANN model to estimate the Ra as a function of the cutting
parameters and some process variables represented by the MFCC of the corresponding signal. Among
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Fig. 2.10: Proposal architectures for the ANN models with the input/output variables predicted Ra.

the various ANN models, feed-forward architecture was selected, and the training algorithm was the
Levenberg-Marquardt. Two different structures were defined to build the ANN model: 12⇥12⇥1 (one
hidden layer), and 12⇥12⇥6⇥1 (two hidden layers). The selected process signals were the following:
acceleration in the x�axis of the workpiece, acceleration in the y�axis of the workpiece, acceleration
in the y�axis in the spindle, force in the x�axis, force in the y�axis, and the AE in the spindle. Four
different models were computed in agreement with the CTWC: New, half-new, half-worn, and worn
cutting tool condition. The procedure to compute the ANN model by considering the cutting parameters
and MFCC of each signal was as follows.

1. From the database, file must be selected with the input/output variables for a specific process signal.
2. Separate the input/output variables in two files (MatLab format). The input variables are stored in a

12⇥ 110 matrix and the output variable was stored in a 1⇥ 110. The 110 experiments were stored
randomly, together with the corresponding Ra value.

3. The input/output information of variables was divided into two data sets for the training (70%) and
testing (30%) procedures.

4. The feedforward network was constructed, and it was trained with the Levenberg-Marquardt algo-
rithm.

5. The estimation of Ra was computed with the trained network, given the training data set.
6. The estimation of Ra was also computed for the testing data set.
7. A correlation factor (R2) was computed between the network response and the corresponding target

vector, (R2 = 1 means perfect correlation).
8. The trained network performance was computed with the mean squared error between the estimated

Ra and the target of the testing data set.
9. The average performance and generalization capacity of the ANN models were computed by consid-

ering four random combinations of the input/output data.

Table 2.5 presents the average correlation factor for two ANN models by using the training data set.
Table 2.6 shows the average correlation factor (R2) and the MSE computed between the estimated and

target Ra values. The results correspond for the testing data set.
For the new CTWC, the ANN model with the best performance was obtained by using the AE signal

and the cutting parameters. Figure 2.11 shows the Ra estimated and target values for the testing data.
The correlation factor (R2) was 93.15% for the testing data set. For the half new tool condition, the
ANN model with the best performance was computed with force in the y-axis. The correlation factor
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Table 2.5: Average correlation factor (R) for the trained ANN models with the training data set.

Cutting Tool Model Correlation factor (%) for training data set
Wear Condition AccX-workpiece AccY-workpiece AccX-spindle Force-X Force-Y AE-Spindle

New
ANN(12⇥12⇥1) 94.4 86.14 89.09 92.31 89.47 91.01

ANN(12⇥12⇥6⇥1) 92.24 95.01 95.14 96.23 94.96 96.07

Half-New
ANN(12⇥12⇥1) 93.7 93.21 94.3 93.74 94.59 93.75

ANN(12⇥12⇥6⇥1) 93.24 95.04 94.72 94.6 93.91 91.67

Half-worn
ANN(12⇥12⇥1) 90.62 91.59 92.37 93.16 93.95 90.21

ANN(12⇥12⇥6⇥1) 93.61 90.89 94.48 94.29 95.02 92.25

Worn
ANN(12⇥12⇥1) 93.38 93.85 95.39 94.13 96.03 95.44

ANN(12⇥12⇥6⇥1) 95.89 94.19 94.35 95.21 96.55 95.19

Table 2.6: Average correlation factor (R) for the trained ANN models with the testing data set.

Cutting Tool Correlation factor (%) and MSE (%) for testing data set
Wear Condition Model AccX-workpiee AccY-worpiece AccY-spindle Force-Y Force-X AE-spindle

R MSE R MSE R MSE R MSE R MSE R MSE

New
ANN(12⇥12⇥1) 86.87 0.46 84.44 0.61 77.92 0.93 83.75 0.69 73.49 1.39 83.48 0.62

ANN (12⇥12⇥6⇥1) 91.68 0.41 90.14 0.3 88.54 0.37 89.74 0.4 85.95 0.57 92.27 0.25

Half-New
ANN(12⇥12⇥1) 82.8 0.52 83.25 0.57 86.72 0.35 86.24 0.45 84.9 0.49 84.6 0.49

ANN(12⇥12⇥6⇥1) 87.15 0.36 87.64 0.37 88.24 0.31 88.5 0.29 89.49 0.3 84.77 0.38

Half-worn
ANN(12⇥12⇥1) 81.32 0.75 73.51 1.14 81.55 1.13 82.19 1.25 87.37 0.64 83.33 1.45

ANN(12⇥12⇥6⇥1) 81.72 0.74 80.75 0.96 84.45 0.75 82.75 0.75 87.83 0.52 84.45 0.62

Worn
ANN(12⇥12⇥1) 80.35 0.39 79.19 0.6 83.94 0.34 86.16 0.34 87.24 0.27 84.86 0.36

ANN(12⇥12⇥6⇥1) 86.61 0.25 84.09 0.38 88.16 0.21 87.98 0.23 88.01 0.23 88.75 0.28

was 89.49% and the MSE was 0.30%. For the half-worn tool condition, the ANN model with the best
performance was obtained with force in the y-axis. Finally, for the worn CTWC, the ANN model with the
best performance was computed with the AE signal in the spindle.

2.6.2 Cutting Tool Wear Condition Modeling

It is vital to develop an ANN model to predict the CTWC during the machining process. The ANN model
must be developed considering the experiments for both new, half-new, half-worn, and worn CTWC. The
number of experiments was 441. Again, the inputs to the ANN model are the five cutting parameters and
the seven Cepstrum coefficients of each process signal. The output of the ANN model will be the CTWC.
The data provided in the files to train the ANN must be normalized to avoid numerical instability. The
data were normalized with a mean zero and a standard deviation equal one. Additionally, the bipolar
sigmoidal normalization was employed because the minimum and maximum values are unknown in
real-time, and it is given by z̄i = (1� e�yi)/(1+ e�yi).

The defined structure to build the ANN model was 12⇥12⇥6⇥4 (two hidden layers). The selected
process signals were the following: acceleration in the x-y axes of the workpiece, acceleration in the
y-axis in the spindle, force in the x-y axes and the AE in the spindle. The procedure to compute the ANN
model by considering the cutting parameters and MFCC of each signal was the following:
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Fig. 2.11: Results of Ra estimated and the target values for the ANN model and the new CTWC.

1. From the database, the file must be selected with the input and output variables for a specific process
signal.

2. The input data for the ANN model must be normalized with the procedure described previously. The
input and output variables must be separated into two files (MatLab format). The input variables were
stored in a 441⇥12 matrix, and the output variables were stored in a 441⇥4 matrix.

3. The input and output variables must be divided into two data sets for the training (70%) and testing
(30%) procedures. This step involved selecting 70% of the data for each New, Half-New, Half-Worn
and Worn cutting tool condition. The rest of the data will be used for the testing procedure.

4. The input and output variables were selected randomly.
5. The feedforward network was constructed, and it was trained with the Levenberg-Marquardt algo-

rithm.
6. The estimation of VB was computed with the trained network, given the training data set.
7. The estimation of VB was also computed for the testing data set.
8. A confusion matrix was computed to show the ANN performance.
9. The average performance and generalization capacity of the ANN models were computed by consid-

ering four random combinations of the input and output data.

Table 2.7 presents the average performance for the ANN model by using the training and testing data
set. The number of epochs used for convergence is also included.

The best performance of the ANN model was obtained by using the AE signal. The average perfor-
mance for the training data set was 100% and for the testing data set was 98.67%. Additionally, the ANN
model with AE process signal converges very quickly.

Figure 2.12 shows the confusion matrix for the training and testing data sets with the AE signal. The
obtained results show an excellent performance of 98.5% for the testing data set; only two experiments
were classified as worn CTWC. In reality, these should be classified as half-worn CTWC.
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Table 2.7: Performance of the ANN model for the training and testing data set.

Acc X-axis workpiece Acc Y-axis workpiece Acc Y-axis spindle
Performance Number Performance Number Performance Number

Training Testing epochs Training Testing epochs Training Testing epochs
96.1 39.1 1000 98.1 42.9 1000 99.4 60.2 1000
98.1 38.3 1000 97.4 43.6 1000 100 63.9 1000
93.2 39.8 1000 97.1 48.1 1000 100 58.6 1000
95.5 44.4 1000 89 45.9 1000 100 61.7 1000

Average 95.72 40.4 95.4 45.12 99.85 61.1
Force X-axis Force Y-axis AE in spindle

Performance Number Performance Number Performance Number
Training Testing epochs Training Testing epochs Training Testing epochs

99.7 66.9 1000 99.7 66.9 1000 100 100 18
100 72.2 269 99.7 68.4 1000 100 97.7 21
99.7 74.4 1000 99.7 70.7 1000 100 98.5 18
100 71.4 194 99 67.7 1000 100 98.5 19

Average 99.85 71.22 99.52 68.42 100 98.67
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Fig. 2.12: Confusion matrix of the computed ANN model with AE process signal

Figure 2.13 shows the targets testing data and the response of the ANN model to predict the CTWC.
The results show only the two misclassified experiments.

2.6.3 Off-line Optimization

The optimization step was validated with several tests.

1. An operator defines the cutting conditions, cutting and geometric parameters, and the desired Ra value
(Rd

a).
2. The planning module computes the RP

a value, under these conditions.
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Fig. 2.13: Classification of the testing data set with the ANN model using the AE process signal

3. If Rp
a is bigger than Rd

a , the GA computes the new value of fz, and the Rp
a value is calculated again, as

shown in the left plot of Fig. 2.14.
4. If the new value of Rp

a is still high, the GA computes the new values of fz and Dtool that minimize
Rp

a , as shown in the center plot of Fig. 2.14. Then, the Rp
a value is calculated with the new cutting

parameters.
5. If the Rp

a value continues high, the GA executes another iteration to find new fz and ae values, see
right plot of Fig. 2.14 . Finally, if the Rp

a value is equal or lower than the Rd
a value, the new cutting

parameters are accepted.
6. If the Rp

a value continues high, the work piece material must be replaced, and the procedure must be
repeated.

The GA was configured by 100 generations, 20 population sizes, 0.8 crossover probabilities, and 0.2
mutation probabilities. The feed per tooth ranged between 0.025 - 0.13 mm/foot, the radial depth of cut
ranged between 1 and 5 mm and the cutting tool diameter 8 and 20 mm.

2.6.4 Machining Policy

The MDP was validated in the industrial HS-1000 Kondia machining center. The MDP can be solved
using different algorithms: Police iteration and value iteration. The optimal total cost function was com-
puted based on the defined MDP. The optimal policy p can be obtained by an iterating step that defines
the actions of the operator that minimize the cost.

Given that MDP is a stochastic model defined by a Markov property, the transition matrices, and an
initial distribution of the states was simulated several times to illustrate the variability of the results. Fig-
ure 2.15 shows two simulations given the (aggressive condition) and (conservative condition) matrices.
The left plot of this figure shows a normal evolution of the cutting tool, where the operator does not



32 Antonio Jr. Vallejo Guevara, Ricardo A. Ramı́rez Mendoza and Ruben Morales-Menendez

0 10 20 30 40 50
0.315

0.32

0.325

0.33

0.335

Generation

Fi
tn

e
ss

 v
a

lu
e

Best: 0.31746 Mean: 0.32001

 

Mean fitness

Best fitness

0 10 20 30 40 50

0.29

0.3

0.31

0.32

0.33

0.34

0.35

Generation

Fi
tn

e
ss

 v
a

lu
e Best: 0.28116 Mean: 0.28401

 

Best fitness

Mean fitness

0 10 20 30 40 50
0.26

0.28

0.3

0.32

0.34

0.36

Generation

Fi
tn

e
ss

 v
a

lu
e

Best: 0.27414 Mean: 0.27431

 

Best fitness

Mean fitness

Fig. 2.14: Left plot: Ra optimization based on fz. Center plot: Optimization based on fz and DTool .
Right plot: Optimization based on fz and ae

take actions and wait for a possible tool fracture when the cutting tool reaches the top worn condition.
The right plot of Fig. 2.15 depicts the conservative condition, where the operator decides to change the
cutting tool if the worn CTWC is detected during the machining process.
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Fig. 2.15: Simulation of the Markov system with the two transition matrices. Left plot presents an
aggressive condition for the action a1. The right plot presents a conservative condition for the action a2

Figure 2.16 illustrates the results of the variability of the Markov system for 30 evaluations. The
box and whisker plot shows the comparative costs between the different actions and the optimal policy
determined by the MDP. These results demonstrate that the the optimal policy presents the lower costs
when compared with the aggressive, intermediate, and conservative actions.

2.7 Conclusions

A planning module for HSM was designed and incorporated within an intelligent control system. This
module is based on the MDP framework, yielding novel features in an optimization process. The Intelli-
gent Control System allows the following functions:
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• In off-line operation, the system estimates the Ra and compares it to a desired Ra. Using a GA deter-
mines the optimal cutting parameters to minimize the Ra to the desired value.

• In on-line operation, the system uses ANN models to estimate the Ra and the CTWC, which will allow
to validate that the desired Ra is met. ANN use cutting parameters and different process state variables
to monitor Ra during machining of different aluminum parts and with different cutting tool diameters.

• The MDP framework allows modeling decision-making under uncertainty where the actions of the
operator are partly under control.

Regarding the limitations of the models and the intelligent control system developed, the following
can be mentioned:

• A novel mathematical framework for fault diagnosis (i.e., CTWC and surface roughness) was devel-
oped as a crucial element for this module. Although early results are promising, the full integration of
an MDP framework will require more research into the cross-relationship between key variables.

• Machine tools have multiple degrees of freedom and are mainly related with vibrations and dynamic
loading of mechanical structures. It is important to compute performance of the proposal models in
different machines tools and estimate deviations with respect to the original HSM machining center.

Acknowledgements The authors would like to thank to J.R. Alique (Instituto de Automática Industrial, Spain) for the financial support and
technical advice during the experimental program. Authors make the experimental database available

Appendix 1. Mel Frequency Cepstrum Coefficients

The procedure for computing the MFCC is given in Fig. 2.17 and can be summarized as follows:

1. A small segment of the signal is selected for applying a Discrete Fourier Transform, to compute the
magnitude of the energy spectrum in a logarithm scale.

2. The real frequency scale ( fHz) is mapped to the perceived frequency scale ( fMel) as:
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fMel = 2,595log
✓

1+
fHz

700

◆
(2.1)

3. After a triangular band-pass filter is applied for smoothing the scaled spectrum, the MFCC are com-
puted using the inverse Discrete Fourier Transform:

MFCCc =
Np

Â
j=1

y( j)cos
✓

p
Np

✓
j� 1

2

◆
c
◆

(2.2)

where y( j) is the output of the triangular band-pass filter, Np is the number of band-pass filters, c
defines the Cepstrum coefficient number (c = 1,2,...,Np) , and Np defines the total number of Cepstrum
coefficients.
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Chapter 3

Experimental results of fault isolation approach for a 2-DOF helicopter

Manuel Alejandro Zuñiga1, Luis Alejandro Ramı́rez1, Gerardo Romero Galvan1, Efraı́n Alcorta
Garcı́a2, and Aldo J. Muñoz Vázquez3

Abstract Fault isolation increasingly becomes an important aspect for the feasibility and robustness of
systems. The knowledge of a fault’s presence offers important decision-making information related to
the control of a system (i.e. information to keep a system in a healthy and functional state) and/or also for
organizing maintenance. The case of a two degree of freedom (2-DOF) helicopter is studied. Practical
aspects related to the fault modeling and implementation, in order to have the possibility of a detailed
study of the used algorithm, are discussed. A previously developed model-based fault isolation algorithm
is implemented by using specific hardware. A comparison between simulations and experimental results
is also provided, and some directions for facing remaining challenges are also discussed.

3.1 Introduction

In recent years, fault diagnosis has been an important research topic, mainly because of its relationship
with the safety and reliability of industrial processes. Fault diagnosis is useful for establishing main-
tenance programs for devices that are part of control systems and for developing fault-tolerant control
schemes. In the last 50 years, different approaches for isolating faults in control systems have been pro-
posed, as seen in Blanke et al. (2016), Shen et al. (2017), Varga (2017), Zhang et al. (2018), and Ding
(2020). A failure in a control system is considered when a change in some parameters of the system
occurs in such a way that it operates outside the tolerance margin for which it was designed. For this
reason, it is important to establish mechanisms that allow determining when a fault occurs, which is
known as the fault diagnosis and isolation problem.

One of the first analytical redundancy algorithms for fault diagnosis is the so-called model-based ap-
proach, i.e. they are based on mathematical models, which can be consulted in Blanke et al. (2016)
and Ding (2020); here, the mathematical model plays a central role in the design of fault detection and
isolation algorithms. Other approaches that have been recently proposed appear in Patan (2019), where
neural networks are used primarily to determine fault-tolerant control algorithms; Concepts based on

1Universidad Autónoma de Tamaulipas, Unidad Académica Multidisciplinaria Reynosa Rodhe, Mexico,
e-mail: manuel.zuniga@docentes.uat.edu.mx, laramirez@docentes.uat.edu.mx and gromero@uat.edu.mx
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artificial intelligence have also been used to solve this problem, see Korbicz et al. (2004). Furthermore,
artificial intelligence and data-driven approaches have been employed to solve this problem. See Korbicz
et al. (2004) and Mansouri et al. (2020), as well as in Ding (2014) who includes some model-inspired
approaches. Fault diagnosis of hybrid dynamic and complex systems has been considered in Sayed-
Mouchaweh (2018). Furtermore an adaptive techniques for fault diagnosis are discussed in Shen et al.
(2017), and Wang et al. (2020) consider iterative learning approaches for fault diagnosis. The diagnosis
of fractional-order systems is studied in Martinez-Guerra et al. (2021), and fault diagnosis in switched
systems is revised in Du et al. (2021). Among the above mentioned books considering principally theo-
retical results, there are also references that consider specific applications, such as Zolghadri et al. (2014)
for fault diagnosis, fault-tolerant control, and the guidance of aerospace vehicles. Other aspects such as
the fault detection of wind turbine systems have been considered in Reza Karimi (2018). Induction mo-
tors fault diagnosis is discussed in Karmakar et al. (2016). Model-based condition monitoring, actuator,
sensors, machinery, plants, and drives are considered in Isermann (2011).

This work presents an analysis and design of a fault isolation scheme for a Quanser® 2-DOF Heli-
copter. Mainly, a Hamiltonian model of the system previously mentioned is derived. Faults in the system
are also modeled as well as implementation methods (with the results of this study). A fault isolation
scheme is derived using nonlinear decoupling and observer-based residual generation, as in Ramı́rez
et al. (2020). The implementation of the fault isolation algorithms, as well as the experimental results,
are also discussed. Some practical experiences related to the implementation are presented.

The rest of this work is organized as follows: the next section shows some preliminary results that will
be used later in the paper. The system under consideration is presented in Section 3, and details about the
design of the fault isolation scheme are considered in Section 4. The experimental results are presented
in Section 5, and, finally, some conclusions are summarized in Section 6.

3.2 Preliminaries

3.2.1 Generalized Hamiltonian systems

A class of nonlinear systems admits a representation in a generalized Hamiltonian form, as described by
Rodriguez-Alfaro et al. (2015), Sira Ramı́rez and Cruz Hernández (2001) and Van der Schaft (2017). It
is given by

ẋ = [J(x)+S(x)]
∂H(x)

∂x
+F(x)+Gu

y = C
∂H(x)

∂x
(3.1)

with the state vector x 2 ¬n, the input vector u 2 ¬m, y 2 ¬p is the output vector, G 2 ¬n⇥m being a
constant matrix, F 2¬n a vector of nonlinear functions and J 2¬n⇥n being a skew-symmetric intercon-
nection matrix (J(x) =�JT (x)) associated with a simple bilinear form, which represents the conservative
part of the system. S(x) 2 ¬n⇥n is a symmetric matrix (S(x) = ST (x)), C 2 ¬p⇥n is an output constant
matrix . H(x) is a smooth vector-valued function of and real values, and it can be understood as the
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generalized energy defined as

H(x) =
1
2

xT Mx (3.2)

where M is a constant matrix, symmetric and positive definite, and ∂H(x)/∂x represents the gradient of
H(x). Finally, F(x) is a vector field that contains the non-linear parts of the system.

3.2.2 Fault isolation schema

The fault isolation strategy utilized in this paper was presented in Ramı́rez et al. (2020); it is basically a
bank of nonlinear observer-based residual generators. Each residual generator is designed for a decou-
pled subsystem so that each subsystem is associated with a set of faults. Moreover, each subsystem is
obtained by taking advantage of the specific model structure of the 2-DOF helicopter.

In addition, the decoupling of the effect of some specific faults could be achieved by using the output
measurements, which are linear with respect to the state. This will be made clear later. Roughly speaking,
the residuals can be represented as shown in Fig. 3.1.

systemu(t)

u(t)
y(t)

y(t)

sub−model i y (t)
i

y(t)
u(t)
y (t)

i
r (t)i

residual
generator i

Fig. 3.1: Schematic of residuals

3.3 Helicopter with two degrees of freedom

The system used in this work is the Quanser® 2-DOF helicopter, which is a lab test prototype standing
on a fixed pedestal (that pivots) and consists of two motors: one on the front for the lift movement and
one rear or tail motor for the yaw movement. See Fig. 3.2.

The system model is represented by means of the following nonlinear equation, in vector form:

D(q)q̈+N(q, q̇)+gv(q) = t, (3.3)

where t 2 ¬2 represents the input vector, gv(q) 2 ¬2 is the vector of gravitational pairs, D(q) 2 ¬2⇥2

corresponds to the inertial matrix, which is symmetric and positive definite, N(q, q̇) 2 ¬2⇥2 models the
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F
cm1

rp
g

Fy
r y

yaw

pitch

Fp

Fig. 3.2: Schematic of the Quanser® 2-DOF helicopter

velocity quadratic effects generated by centrifugal and Coriolis forces. For the Quanser® system, define
the generalized coordinate vector q = [f ,y]T , where f and y are the pitch and yaw angles. Consider
t = [Up,Uy]T , and

D(q) =


m1l12 +m2l22 0
0 m1l12cos2(f)+m2l22cos2(f)

�
,

gv(q) =


m1gl1cos(f)�m2gl2cos(f)
0

�
.

3.3.1 Hamiltonian representation

Hamiltonian representation brings a structure to a model of a dynamic system and this will be used later
to design a fault detection and isolation scheme.

A way to obtain the Hamiltonian representation from the Euler-Lagrange representation (3.3) (as in
Van der Schaft (2017), for example) is by computing the generalized moment p(t), defined by

p = D(q)q̇ (3.4)

and the Hamiltonian function
H (q, p) =

1
2

pT D�1(q)p+U(q), (3.5)

where U(q) represents the potential energy of the system. Thus, the system s model (3.3) can be alter-
natively written as
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q̇ =
∂H (q, p)

∂ p
= D�1(q)p, (3.6)

ṗ = �∂H (q, p)
∂q

+ t =� ∂
∂q

✓
1
2

pT D�1(q)p
◆
� ∂

∂q
U(q)+ t, (3.7)

where ∂
∂qU(q) = gv(q).

The system equations that represent (3.3) are the following:

ẋ1 =
x3

l2(m1 +m2)
, (3.8)

ẋ2 =
x4

l2cos2(x1)(m1 +m2)
, (3.9)

ẋ3 =
�x2

4 sin(x1)

l2cos3(x1)(m1 +m2)
�gl cos(x1)(m1 �m2)+Up, (3.10)

ẋ4 = Uy (3.11)

where the system state vector is given by xT = [x1 x2 x3 x4] with x1 = f , x2 =y , x3 = ḟ and x4 = ẏ .
The control law t = [Up,Uy]T is a proportional derivative (PD) type controller, and it was tuned using a
procedure presented in Romero et al. (2012). The variables and parameters used in the previous equations
are as follows: x1(f) is the pitch angle; x2(y) is the yaw angle; x3(ḟ) corresponds to the pitch angular
velocity; x3(ḟ) represents the pitch angular velocity; x4(ẏ) gives the yaw angular velocity; Up is the
pitch control input; Uy corresponds to the yaw control input; m1 represents the mass of lift motor; m2 is
the mass of the tail motor; l1 corresponds to the length m1 to center of mass; l2 is the length m2 to center
of mass and g represents the gravity.

The following generalized Hamiltonian function is defined: H = 1
2xT x, with M = I4⇥4. H is the basis

of the generalized Hamiltonian representation

ẋ = J(x)
∂H(x)

∂x
+S(x)

∂H(x)
∂x

+

2

66664

x3
l2(m1+m2)

x4
l2cos2(x1)(m1+m2)

�x2
4 sin(x1)

l2cos3(x1)(m1+m2)
�gl cos(x1)(m1 �m2)

0

3

77775
+

2

664

0 0
0 0
1 0
0 1

3

775


Up
Uy

�

| {z }
u

, (3.12)

y =


1 0 0 0
0 1 0 0

�
∂H(x)

∂x
, (3.13)

where, ∂H
∂x = x, J(x) = [0] 2 R4⇥4, S(x) = [0] 2 R4⇥4.

3.3.2 Fault Modeling

Four possible faults are studied in this work: one for each sensor and one for each actuator. In general,
faults could be additive or multiplicative; however, in this paper the focus is on the case of additive faults,
which are modeled as exogenous inputs to the system. Note that faults can be also incipient, abrupt or



44 Manuel Alejandro Zuñiga, Luis Alejandro Ramı́rez, Gerardo Romero Galvan, Efraı́n Alcorta Garcı́a, and Aldo J. Muñoz Vázquez

intermittent, depending on the form in which they are manifested. See for example Chen and Patton
(1999), Ding (2013) and Isermann (2011).

3.3.2.1 Additive faults’ representation

As mentioned above, additive faults are modeled with additive terms in the actuators channels fai, as
well as in the sensors channels fsi, with i = 1,2,3. The representation of the system s model with faults
(sensor and actuator) is given as follows:

ẋ = J(x)
∂H(x)

∂x
+S(x)

∂H(x)
∂x

+F(x)+Gu+

2

664

0 0
0 0
1 0
0 1

3

775

| {z }
E f


fa1
fa2

�
, (3.14)

y = C
∂H(x)

∂x
+


fs1
fs2

�
. (3.15)

3.3.2.2 Fault decoupling

Sensor faults

In order to obtain two sub-models where each of them is associated with only one sensor fault, the
following strategy is used. Firstly, the output related to sensor one (output one) is considered; here, the
corresponding differential equation (3.8) of the states required to integrate output one is considered as
part of the sub-model one. Additionally, the differential equations of the states appearing in the previous
differential equations, i.e. equations (3.9), (3.10) and (3.11), should be included in the sub-model as well.

Secondly, referring to sub-model two, output two (related to sensor two) is considered. The corre-
sponding differential equations of the states required to integrate output two are considered as part of
the sub-model two. As in the first case, the differential equations of the states appearing in the previous
differential equations should also be included in the sub-model.

Sub-model one. For the first sensor, only the state x1 is involved, so the differential equation for
ẋ1 is required first. Because, x3 appears in the equation of ẋ1, however, the differential equation for ẋ3
should also be included in the sub-model. Note that x4 is present in the differential equation of ẋ3, so the
differential equation for ẋ4 is also required in sub-model one:

ẋ1 =
x3

l2(m1 +m2)
, (3.16)

ẋ3 =
�x2

4 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up + fa1, (3.17)

ẋ4 = Uy + fa2, (3.18)
ys1 = x1 + fs1 (3.19)
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Note that in sub-model one, the fault of sensor two ( fs2) is not affecting, i.e. it is not present in the
submodel one.

Sub-model two. For the second subsystem, only the second output is considered. The state variable
involved is x2, so ẋ2 should be included. In the differential equation of ẋ2, x1 and x4 are also present;
therefore, ẋ1 and ẋ4 are included. Finally, x3 is also present, so ẋ3 is also included:

ẋ1 =
x3

l2(m1 +m2)
, (3.20)

ẋ2 =
x4

l2 cos2(x1)(m1 +m2)
, (3.21)

ẋ3 =
�x2

4 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up + fa1, (3.22)

ẋ4 = Uy + fa2, (3.23)
ys2 = x2 + fs2 (3.24)

Note that in the sub-model two, the fault of sensor one ( fs1) is not affecting, i.e. it is not present in the
submodel two.

Actuator faults

Similar to the case of sensor faults, we obtained the decoupled subsystems that are sensitive only to
one particular fault. Thus, the corresponding residual is generated from an observer based on output
feedback.

Sub-model three. The first actuator fault ( fa1) is connected to the differential equation of the state
variable x3 of Up since x1 is known and x2 is assumed to be free of fault.

ẋ1 =
x3

l2(m1 +m2)
, (3.25)

ẋ3 =
�
�
ẋ2l2 cos2(x1)(m1 +m2)

�2 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up + fa1, (3.26)

y1 = x1 + fs1. (3.27)

Note that x4 is not available, but it can be obtained from the dynamics of the system as

x4 = ẋ2l2 cos2(x1)(m1 +m2), (3.28)

and ẋ2 is obtained through numerical differentiation from the measurement: y2 = x2 + fs2.
Sub-model four. The differential equation for ẋ4 is now considered. Note that no additional state

variable is strictly required, however, in order to connect with the output the differential equation because
ẋ2 is also included in the model together with the second output:
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ẋ2 =
x4

l2 cos2(x1)(m1 +m2)
=

x4

l2 cos2(y1� fs1)(m1 +m2)
, (3.29)

ẋ4 = Uy + fa2, (3.30)
y2 = x2 + fs2. (3.31)

in addition x1 is obtained from the first output equation as: x1 = y1� fs1
Remark 1. Note that for fault decoupling an inspection procedure is used instead of a nonlinear trans-

formation, in other words, for sensor i, the output is selected (omitting all other outputs) as well as all the
differential equations associated with the states that explicitly appear in the selected output and the ones
required to complete the states present in the differential equations selected. In Table 3.1 a summary of
the sensitivity of each of the different faults is presented, where

p
means that the sub-model is sensitive

to the corresponding fault.
The fault incidence matrix is as follows:

Table 3.1: Sensitivity of sub-models with respect to faults

sub-models fs1 fs2 fa1 fa2

1
p

0
p p

2 0
p p p

3
p p p

0
4

p p
0

p

where
p

means that the corresponding sub-model is affected (at least theoretically) by the respective
fault. In contrast, 0 means that the sub-model is decoupled from the respective fault.

3.4 Fault isolation for a 2-DOF Helicopter

3.4.1 Residual Generator Design

The observer-based residuals are built following the method presented in Ramı́rez et al. (2020). It takes
advantage of the Hamiltonian structure of the model, and it is rewritten here for completeness:

ẋ = [J(y)+S(y)]
∂H(x)

∂x
+F(x)+Gu, (3.32)

y = C
∂H(x)

∂x
. (3.33)

The state x of the nonlinear system (3.1) is estimated by the system

˙̂x = [J(y)+S(y)]
∂H(x̂)

∂ x̂
+F(x̂)+Gu+K(y�h), (3.34)

h = C
∂H(x̂)

∂ x̂
, (3.35)
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if the pair (C,S) is observable or at least detectable and the matrix

X = MT


S� 1
2
(KC+CT KT )

�
M+P (3.36)

with P = 1
2


M ∂F(x)

∂x + ∂F(x)
∂x

T
MT

�
is negative definite.

For the construction of the bank of residual generators, an observer for each sub-model should be
designed. Considering the sub-model one, which has been obtained to have the effect of the sensor of
fault one ( fs1), and the analysis made, the actuator faults fa1 and fa2 also affect sub-model one:

ẋ1 =
x3

l2 (m1 +m2), (3.37)

ẋ3 =
�x2

4 sin(x1)

l2 cos3(x1)(m1 +m2)
�gl cos(x1)(m1 �m2)+Up, (3.38)

ẋ4 = Uy + fa2, (3.39)
ys1 = x1 + fs1. (3.40)

leads to its generalized Hamiltonian representation, with

∂H
∂x

= [x1 x3 x4]
T . (3.41)

The measurement of the output variables was performed by two rotary optical encoders: one placed
at the base of the platform, which allows the yaw angle to be measured y , and the other placed in the
center of the platform, which measures the pitch angle f . See Fig 3.3.

Fig. 3.3: Helicopter structure taken from Quanser Inc. (2012)

The parameters of the previous model are the following:



48 Manuel Alejandro Zuñiga, Luis Alejandro Ramı́rez, Gerardo Romero Galvan, Efraı́n Alcorta Garcı́a, and Aldo J. Muñoz Vázquez

J(x) = [0] 2 R3x3, S(x) = [0] 2 R3x3, F(x) =

2

64

x3
l2(m1+m2)

�x2
4 sin(x1)

l2cos3(x1)(m1+m2)
�gl cos(x1)(m1�m2)
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3
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2

4
0
1
0

0
0
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3
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⇥
1 0 0

⇤
.

The pair (C,S) is detectable according to Definition 2.1 in Sira Ramı́rez and Cruz Hernández (2001)

since the matrix


C
l I3⇥3�S

�
is of full rank for any value of l in Z<0 = {l̄ 2 Z : ¬{l̄}< 0}. Thus, the

residual is defined from the observer:

˙̂x1 =
x̂3

l2(m1 +m2)
+L1(y1� x̂1),

˙̂x3 =
�x̂2

4 sin(x1)

l2cos3(x1)(m1 +m2)
�gl cos(x1)(m1�m2)+Up,

˙̂x4 = Uy,

ŷs1 = x̂1.

Note that the residual is designed from a copy of the original subsystem and the correction factor
L1(y1� ŷ1).

For the fault in the second sensor ( fs2) and those in the two actuators ( fa1) and ( fa2), the decoupling
is similar to the procedure utilized in the fault ( fs1).

In Table 1, we can see that if single faults are occurring, they can be isolated. The four residuals
are obtained assuming that only one fault at a time is present and not all simultaneously. In addition,
a residual is obtained considering a derivative in time, so obtaining this derivative could be a difficult
task in the presence of noise. It is important to notice that the generation of residuals based on observers
constitutes a reliable option for reducing noise effects because of the inherent filtering characteristic of
the observer; see Rodriguez-Alfaro et al. (2015).

3.5 Experimental results

The 2-DOF experimental platform consists of a helicopter s body mounted on a rigid metal base. It has
two motors mounted perpendicularly to each other. This emulates the typical helicopter configuration
with a main rotor, which generates the pitch motion, and a tail rotor that produces the yaw motion. DC
motors work with a nominal voltage of 12 V. The platform parameters are shown in Table 3.2.

The measurement of the output variables was carried out by two rotary optical encoders: one placed
at the base of the platform, which allows the yaw angle to be measured y , and the other placed in the
center of the platform, which measures the pitch angle f (3.3).
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Table 3.2: The platform parameters

Parameter Description Value
m1 Mass of lift motor 0.014kg
m2 Mass of tail motor 0.232kg
11 Length m1 to center of mass 0.203m
12 Length m2 to center of mass 0.203m
g Gravity 9.8m/s2

To implement the algorithm, the Simulink© tool from MATLAB© was used. Data acquisition was
performed using an Arduino Mega 2560, which consists of a 54 input/output pins, including 14 pins
with the ability to work as pulse width modulation and 16 pins as analog inputs, a microprocessor, a 16
MHz crystal, and a 256K flash memory, with a working range between 7 V and 12 V. In the power part,
a SparkFun Monster Moto Shield was used, with a capacity of 16 V, and a current of 30 A, 20 kHz of
PWM frequency.

It is important to mention that the faults produced in each of the physical tests were in a proportion of
50% with respect to the output, and they were presented as abrupt faults.

Introduced sensor faults

They are considered abrupt failures in the sensors; they appear suddenly and affect the measured signal
of the encoders. As a result, the signal used to read the pitch and yaw angles, which is later fed back to
the control algorithm, presents deviations between estimated and the current (real) angle of the helicopter
position.

To produce a failure in the sensors, we considered adding an external signal to the sensor s signal
that feeds the algorithm. The signal is formed virtually from a block of noise-limited according to a
percentage of the failure with respect to the output.

Introduced actuator faults

Helicopter motors are considered actuators that convert electrical energy into rotary motion. Propellers
generate thrust force that produces displacement in pitch and yaw, respectively. Because of the aerody-
namic profile of the propellers, when rotating, a difference in speed is obtained on each side of the blade
between the fluid on one side and the other. Therefore, the difference in speeds leads to a difference in
pressure, and, thus, a force that is perpendicular to the plane of rotation is generated, which is known as
the propulsion force. Once the helicopter propeller begins to rotate, it picks up the air and is an accel-
erator. The speed of the air behind the disk, multiplied by the mass of displaced air, gives us the thrust
force. Based on this idea and in order to cause a decrease in the thrust force of the helicopter, different
ways of blocking the air (like covers) surrounding the helicopter were designed that correspond to 50%
of the area of the rotating disk, which, when placed on the propellers, reduced the airflow, causing the
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helicopter to lose thrust and lift. These covers were placed abruptly in order to have the same effect as a
partial actuator failure.

3.5.1 Fault scenarios and experimental results

In order to show the effectiveness of the designed residuals, four cases are presented, one for each
considered fault. For each case, the four residuals obtained from the experimental platform are shown.

Fault in sensor one
A 50% change in the sensor signal of the output one is considered, i.e., of the measured angle f . The
change occurs 15 seconds after the initial time.
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Fig. 3.4: Residuals’ response to sensor fault one ( fs1)

Fault in sensor two
A 50% change in the sensor signal of output two is considered, i.e., of the measured angle y . The change
occurs 15 seconds after the initial time.

Fault in actuator one
An approximated 50% change in the first actuator signal is considered. The change occurs 15 seconds
after the initial time approximately.

Fault in actuator two
An approximated 50% change in the second actuator signal is considered. The change occurs approxi-
mately 15 seconds after the initial time.
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Fig. 3.5: Residuals’ response to sensor fault two ( fs2)
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Fig. 3.6: Residuals’ responses to an actuator one fault ( fa1)

3.6 Conclusion

Model-based fault isolation algorithms represent an interesting alternative for diagnosis in many pro-
cesses. Fault isolation should be considered from the beginning of the design processes in order to obtain
a better result. Because the considered faults correspond to the sensor and actuator, a simple procedure
was used in order to obtain dynamic redundant relations that can be used for the residual design. Consid-
ering a class of port-Hamiltonian nonlinear systems, a systematic observer-based procedure for residual
design was considered. The designed residuals were tested in a simulation and afterwards were imple-
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Fig. 3.7: Residuals’ responses to an actuator two fault ( fa2)

mented to be tested in a real-time embedded system. Fault isolation was obtained for the four single
faults considered, in which one case also required a specific residual evaluation algorithm (how the sen-
sor fault two, residual one, which should have been zero, but it had some reaction). An important aspect
was how the fault was implemented because it allowed us to make a repetitive experiment. Some topics
that could be part of future work include seeking to reduce the thresholds for fault detection and working,
in this way, with small magnitude faults. On the other hand, it is essential to reduce fault detection time
and isolate coupled faults. Finally, it is also of great interest to propose control strategies that allow the
system to be tolerant when a fault occurs.
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Chapter 4

Buck-boost converter fault diagnosis for an EDF-100 distillation pilot
plant

Mario Heras Cervantes1, Adriana del Carmen Téllez Anguiano1, and Juan Anzurez Marin2

Abstract Distillation is the process of separating chemical mixtures most commonly used in industry,
with applications ranging from cosmetic and pharmaceutical to petrochemical industries. The equipment
used to perform the distillation process is the distillation column. Initial investment and maintenance
costs for distillation columns are very high; therefore, it is necessary to have an appropriate fault detec-
tion system that allows improving the safety and security of the diverse parts of the column including
the heating subsystem, which generates the caloric power necessary to evaporate the mixture. This work
presents a fault detection and diagnosis algorithm for the heating subsystem that is implemented by using
a buck-boost converter and by using the Takagi-Sugeno fuzzy model. Practical considerations related to
the implementation, analysis and a comparison of the results of the convert obtained from simulated and
experimental data in a distillation column using a binary mixture (of ethanol and water) are presented.

4.1 Introduction

The dependence of modern society on technological systems and processes has increased in recent years;
therefore, the proper functioning of these systems has become a necessity. On the other hand, industrial
systems and processes are increasingly sophisticated because of their components and the functions that
they implement. This increases their vulnerability to faults, however (Verde et al., 2013; Kordestani et al.,
2019; Demidova et al., 2021).

Generally, a fault is an undesired variation in the normal behavior of the system, causing damage to the
equipment and risks for the user as well as products with undesired characteristics (Verde et al., 2013).

The vast majority of control systems do not consider factors such as the malfunction of sensors,
actuators or other components that can cause inadequate behavior of the system and instability or risks
for the users. Therefore, industrial processes need to implement feedback and automation devices that
allow better performance and greater safety (Zhong et al., 2017; Bahreini et al., 2021; Iqbal et al., 2019).

In recent years, the design of fault detection and isolation (FDI) systems has been proposed in order to
detect faults and maintain stability and desired performance. Reliable, timely and efficient fault detection

1Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Col. Lomas de Santiaguito, Morelia, Michoacán,
Mexico, e-mail: mario.hc@morelia.tecnm.mx and adriana.ta@morelia.tecnm.mx
2Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, Centro, Morelia, Michoacán, Mexico e-mail: juan.anzurez@umich.mx
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can prevent risks for both the process and the user, which is why fault detection techniques in industrial
systems have become indispensable.

At an industrial level, various processes require an FDI system to operate properly. In the particular
case of the chemical industry, distillation is a process that can benefit from these systems since it requires
a large amount of energy to heat the mixture. The malfunction of a component can affect the safety of
the operators or the quality of the product, hence the need to implement constant monitoring techniques
to avoid faults in the process (Ming and Zhao, 2017; Khan et al., 2020; Ankur et al., 2020).

In a distillation column, the process of separating one or more components of a mixture is performed
from their difference in volatility, which requires an actuator to generate the caloric power necessary
to evaporate the mixture. The most common actuators for this purpose are based on power electronics
converters that regulate the voltage or current in the electric heating resistance responsible for generating
this caloric power.

In this chapter, an FDI system applied to a buck-boost converter was developed. This converter reg-
ulates the heating power, Qb, through the electrical power, W , in a heating resistance through the duty
cycle, d, of a Pulse Width Modulation power signal in an EDF-1000 distillation pilot plant. For the sake
of contextualization, the distillation column model is described in Section 4.2. The developed FDI system
is composed of two fuzzy observers with sliding modes that estimate the output voltage of the converter
(vC) and the current in the inductor (iL). With the estimation errors of each observer, the residuals r1
and r2 are generated, respectively, to determine the symptoms that indicate the presence or absence of
a fault. The system validation is performed in simulation and uses experimental data in real-time on an
EDF-1000 distillation pilot plant.

4.2 Model of a distillation column and its heating actuator

In industry, distillation is the process most commonly used to separate chemical mixtures, with the petro-
chemical (production of petroleum derivatives) and food (production of alcoholic beverages) industries
being the most important, because of the current lifestyle of people (Ibrahim et al., 2018).

The objective of distillation is to separate two or more elements from a mixture, where the most
volatile element is obtained as a distilled product. The equipment to carry out the distillation process
is the distillation column or the distillation pilot plant, as shown in Fig. 4.1, which is composed of a
condenser, a boiler and the body of the column consisting of multiple perforated plates.

The boiler is the element that provides the necessary heat for evaporating the liquid mixture contained
in it. The vapor flow, as it moves up the plates of the column body, is enriched by the light element,
i.e., the element with the lowest boiling point in the mixture. The vapor that reaches the condenser is
condensed and, according to the state of the reflux valve, is extracted as a distilled product or re-enters
the column. The liquid that re-enters through the reflux action descends by gravity into the body of the
column, enriched with the heavy element, i.e., the element with the highest boiling point. Each plate of
the distillation column corresponds to a degree of purity of the light element known as molar fraction
(Téllez, 2010). Because of the cost of the required sensors or meters, the mole fraction is measured
off-line.
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Fig. 4.1: Distillation column schematic

Fractional distillation is used to separate homogeneous liquid mixtures where the components have
a difference between their boiling points of less than 25 oC. Generally, there are two operation modes
of fractional distillation, named continuous and batch. In the continuous mode, the feeding of the liquid
mixture and the extraction of the distilled product is performed continuously.

In batch distillation, the mixture is deposited in the boiler. At the end of the process, the distillate and
bottom product are extracted; the batch operation mode is mainly used to separate small amounts of mix-
ture, obtain different qualities of the distilled product for the same mixture or separate multicomponent
mixtures.

A batch distillation column is not operated with constant parameters, but rather the control actions
are continuously adjusted according to the state of the distillation. Therefore, the continuous and correct
monitoring and control of all the variables of the process are essential for improving the quality and
quantity of the distilled product, as well as the safety of the process and the users. To achieve this
objective, it is necessary to have models and apply the design of observers and FDI systems.

The actuators in a distillation column have a very important role because they can modify physical
variables of the process such as temperature and pressure (Paraschiv and Olteanu, 2015), by modifying
the purity of the product from reflux (Alhaboubi et al., 2022) or the distillation rate.

Figure 4.2 shows the instrumentation diagram of a distillation pilot plant that includes the temperature
sensors, as well as the actuator scheme with the heating power control that regulates the amount of heat
in the boiler.
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Fig. 4.2: Instrumentation diagram of the EDF-1000 distillation pilot plant. TT, TV and LP are the
temperature transmitter, the voltage transmitter and power control, respectively

4.2.1 Nonlinear model of the distillation column

The distillation column model consists of a set of differential equations that represent the dynamics of
each plate of the column in steady state, i.e., when the first drop is distilled. Generally, the model of a
distillation column is based on the balance of the light component in the plates and is given by

dxi

dt
=

Vd(gi+1�gi)+Ld(xi�1� xi)

Mi
, (4.1)

for i = 2,3, ...,n�1, where Vd is the vapor molar flow, Ld the liquid molar flow, Mi the retained mass in
plate i, xi±m the liquid composition in plate i±m, gi±m the vapor composition in plate i±m with m = 1
and each component xi, gi 2 R : 0 < xi  1,0 < gi  1.

For i = 1, the condenser schematic named plate 1 is shown in Fig. 4.3, and its dynamics is expressed
by

dx1

dt
=

Vdg2�Ldx1�Dx1

M1
, (4.2)

where M1 is the retained mass in the condenser, x1 is the liquid composition in the condenser, g1 is the
vapor composition in the condenser, and D is the distilled product.

Thus, the body of the column is formed by n�2 plates. Figure 4.4 shows the schematic of a plate in
the body of the column, as well as the variables that interact in the dynamics of each plate, which are
expressed by (4.1).
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Fig. 4.3: Condenser schematic

Fig. 4.4: Plate schematic

Figure 4.5 shows the schematic of the boiler in the distillation column for the plate n and its dynamics
is expressed by

dxn

dt
=

Vdxn�Vdgn +Ldxn�1�Ldxn

Mn
, (4.3)

where Mn is the retained mass in the boiler, xn the liquid composition in the boiler, gn the vapor liquid
composition in the boiler, xn�1 the liquid composition in plate n�1 and n the total number of plates.

Additionally, according to Skogestad (1997), a batch type distillation column has an interaction of
three molar flows:

• vapor, Vd
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Fig. 4.5: Boiler schematic

Vd =
Qb

Hvap
i xn +Hvap

j (1� xn)
, (4.4)

where Qb is the heating power, Hvap
i the vapor enthalpy of the light element of the mixture and Hvap

j
the vapor enthalpy of the heavy element of the mixture.

• liquid, Ld
Ld = (1�R f )Vd, (4.5)

where R f the percentage of the reflux action.
• distilled product, D

D =Vd�Ld. (4.6)

In addition, the relative volatility is considered dynamic, i.e., changes over time, in the model presented
in this chapter. Relative volatility is defined as the difference between the vapor pressure of the most
volatile components and the vapor pressure of the less volatile components of a liquid mixture, expressed
in

giPT = Psat
i xigi, (4.7)

where Psat
i is the saturation pressure of the mixture components, gi is the activity coefficient and PT is

the total pressure of the process expressed in the liquid-vapor equilibrium for nonideal mixtures. The
activity coefficient gi is dependent on the liquid concentration of the elements in the mixtures.
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4.3 Case study: EDF-1000 distillation pilot plant

The case study is the EDF-1000 distillation pilot plant shown in Fig. 4.6, consisting of 11 perforated
plates, 7 of which have Pt100 RTD temperature sensors located in the condenser (plate 1), plates 2, 4, 6,
8, 10 and the boiler (plate 11).

Fig. 4.6: EDF-1000 distillation pilot plant

The most important physical characteristics of the EDF-1000 distillation pilot plant are as follows:

• Two-liter boiler tank
• 350-Watts heating resistor
• Bottom product output valve
• Double spiral-condenser
• On-off reflux valve

4.3.1 State-space model of the EDF-1000 distillation pilot plant

In order to obtain the linear state-space model of the EDF-1000 distillation pilot plant with 11 plates for
a binary mixture, and considering that gi = (1� xi), G(xi) is expressed for any operation point as

G(xi) = xi
Psat

i eA21(
A21(1�xi)

A12xi+A21(1�xi)
)2

PT
. (4.8)

Thus, the model can be represented by
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ẋ =

0
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Vd ·G(x1)
M1

0 . . . 0
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M2

�Vd ·G(x2)�Ld
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✓
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◆
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(4.9)
where the light component compositions, xT = [x1, x2, · · · , x10, x11] are the state deviations with respect
of the operation point and the heating power, Qb, the reflux, R f , the control inputs and A21 and A12 are
the activity coefficients of the mixture components.

The system output is given by
y =Cx = Ix, (4.10)

with I the identity matrix. These equations are described in detail in (Orozco et al., 2016).
The following considerations for the distillation column are assumed.

• Constant pressure throughout the column
• Inflows and outflows in the liquid state
• No vapor retention
• Vapor and liquid balance
• Vapor and liquid perfectly mixed
• Adiabatic distillation column
• Batch feeding

The simulation results of these nonlinear models are described in Orozco et al. (2016).

4.3.2 EDF-1000 heating actuator scheme and model

The boiler is the element that provides the amount of heat necessary to evaporate the mixture to be
distilled. Boiler actuators generally control heating power from electricity. The amount of the generated
heat output allows controlling the distillation rate in the process, according to equations (4.4) to (4.6), as
shown in Fig. 4.7.

It is very important to regulate the temperature at a suitable value because in certain mixtures dif-
ferent temperatures represent different products, as in the case of petroleum distillation. An inadequate
generation of the heat exchange between the boiler and the mixture in the distillation process can cause
temperature variations, no-uniform heating in the mixture and thermal shocks in the plates, among other
damage. Therefore, it is important to design FDI systems to avoid risks for the user and damage to the
equipment (Paraschiv and Olteanu, 2015).

The boiler in the case study is formed by two tanks where the mixture is deposited and heated by a
heating element (resistor). Figure 4.8 shows the schematic of the two-tank boiler.

The heating power is determined by Joule’s Law expressed as follows: The amount of heat gener-
ated by an electric current passing through a conductor is directly proportional to the resistance of the
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Fig. 4.7: Distillation rate versus electrical power

Fig. 4.8: Two-tank boiler schematic

conductor, the square of the intensity of the current and the duration of the current passing through the
conductor (Li et al., 2022). Joule’s law is described by

J = ie2Rt, (4.11)

where J is the heat amount (Joules), ie the electric current (Amperes), R the resistance (Ohms) and t the
time (seconds).

The law of conservation of energy states that energy cannot be created or destroyed; it can only be
changed from one form to another. Joule’s law expressed in electrical power W is defined by
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J =Wt. (4.12)

The heating resistance converts the electric energy into heat by the circulation of current. Therefore,
the boiler heating power can be manipulated and modeled from the electrical power in the resistance,
i.e., in the heating actuator of a distillation column, Qb is expressed as

Qb =Wt. (4.13)

The boiler actuator scheme, shown in Fig. 4.9, adjusts the output power Wo in the boiler heating
resistance by regulating the output voltage Vo with a DC-DC converter. DC-DC converters can regulate
the output voltage to the desired value by switching electronic devices, usually diodes and transistors.
These power electronics converters have applications in renewable energy systems, smart grids, as well
as domestic and laboratory equipment power systems (Affam et al., 2021; Rojas et al., 2018).

Fig. 4.9: Boiler actuator scheme using a buck-boost converter

The basic topologies of CD-CD converters are buck, boost and buck-boost (Rashid, 2017). In the buck
converter, the output voltage is lower than the input voltage; in the boost converter the output voltage is
greater than the input voltage.

The buck-boost converter is a combination of both converters depending on the duty cycle service d,
where the output voltage Vo is given by (4.14). For d values less than 0.5, the configuration corresponds
to a buck converter. On the contrary, d greater than 0.5 corresponds to a boost converter

Vo =�
Vccd
1�d

with 0 < d < 1. (4.14)

Input voltage, load variations, disturbances and deterioration of the power converters components
(Tarakanath et al., 2014), are undesired factors that directly affect their performance, reliability and
safety, hence the importance of designing and implementing FDI strategies that facilitate estimating or
identifying fundamental parameters in its operation to improve safety and reliability in the system.

4.3.2.1 Buck-boost converter linear model

The linear model of the buck-boost converter is obtained from the ON - OFF states of the switching de-
vice (transistor), considering the set of equations from each topological state. The matrix representation
of the model is given by
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✓

i̇L
v̇C

◆
= A

✓
iL
vC

◆
+Bu, (4.15)

where the state variables are the inductor current iL and the capacitor voltage vC.
During the ON-state time (t = ON) the converter has the topological circuit shown in Fig. 4.10, and

its model is written as
✓

i̇L
v̇C

◆
=

✓
0 0
0 � 1

RC

◆✓
iL
vC

◆
+

✓ 1
L
0

◆
Vcc. (4.16)

Fig. 4.10: Topological ON-state of the buck-boost converter

During the OFF-state time (t = OFF), the converter has the topological circuit shown in Fig. 4.11,
and its model is described as

✓
i̇L
v̇C

◆
=

✓
0 1

L
� 1

C �
1

RC

◆✓
iL
vC

◆
+

✓
0
0

◆
Vcc. (4.17)

Fig. 4.11: Topological OFF-state of the buck-boost converter

The main characteristic of this model is the commutation between the two linear subsystems, repre-
sented by (4.16) and (4.17), which commute from the state of the Q switch. The general matrix repre-
sentation of the system (4.15) is expressed in

✓
i̇L
v̇C

◆
= Ak

✓
iL
vC

◆
+Bku, (4.18)

where k = 1,2 characterize the subsystem for each state of the transistor. Thus,
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A1 =

✓
0 0
0 � 1

RC

◆
, A2 =

✓
0 1

L
� 1

C �
1

RC

◆
, B1 =

✓ Vs
L
0

◆
, B2 =

✓
0
0

◆
, x =

✓
iL
vC

◆
.

4.3.2.2 Buck-boost converter nonlinear model

The nonlinear model of the converter unifies both linear subsystems and includes the control variable u,
which is determined by the duty cycle u = d by considering values between 0 and 1, as shown in

✓
i̇L
v̇C

◆
=

✓
A1

✓
iL
vC

◆
+B1

◆
d +

✓
A2

✓
iL
vC

◆
+B2

◆
(1�d). (4.19)

This equation can be also represented as
✓

i̇L
v̇C

◆
= A2

✓
iL
vC

◆
+B2 +(A1�A2)

✓
iL
vC

◆
d +(B1�B2)d. (4.20)

This model is considered an average model of the linear submodels. As can be observed from (4.16) to
(4.20), the capacitor voltage vC can be affected by variations in the load (heating resistor) and the input
voltage, provoking faults in the actuator and, hence, in the distillation column dynamics.

4.3.2.3 Buck-boost converter Takagi-Sugeno linear model

A Takagi-Sugeno (TS) fuzzy model that interpolates between p linear submodels is based on the follow-
ing model rule:

Model Rule i:
if z1(t) is Mi1 and ... and zp(t) is Mip

Then
ẋ(t) = Aix(t)+Biu(t)

y =Cix(t),
(4.21)

where zi(t)2Rp are the fuzzy variables, Mip the fuzzy sets, x(t)2Rn the state vector, u(t)2Rr the input
vector, y(t) 2Rm the measurable output vectors, C 2Rm⇥n an output matrix, and the matrices Ai 2Rn⇥n

and Bi 2 Rn⇥r, for all i, the state and input matrices with real finite values.
Based on the nonlinear model of the buck-boost converter, presented in (4.20), and using as fuzzy

variables the states (z1 = vC, z2 = iL) that operate between maximum and minimum nominal values
(z1max = vCmax , z1min = vCmin , z2max = iLmax , z2max = iLmin), a Takagi-Sugeno fuzzy model that interpolates
between four linear submodels based on the following rules is proposed.

According to the converter characteristics, the linear submodels are obtained using a nonlinear sector
condition, where



4 Buck-boost converter fault diagnosis for an EDF-100 distillation pilot plant 67

A1 =

✓
0 1/L

�1/C �1/RC

◆
= A2 = A3 = A4

B1 =
Vin+z1min

Lz2min
C

!
, B2 =

Vin+z1min
Lz2max
C

!
, B3 =

Vin+z1max
Lz2min
C

!
, B4 =

✓ Vin+z1max
Lz2max
C

◆

C1 =

✓
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0 1

◆
=C2 =C3 =C4.

To describe the fuzzy sets for the capacitor voltage vC = z1 the membership functions µ(z1) are used

µz1min(z1) =

8
<

:

1 i f z1  z1min
z1max�z1

z1max�z1min
i f z1min < z1 < z1max

0 i f z1 � z1max;

µz1max(z1) =

8
<

:

0 i f z1  z1min
1�µz1min

i f z1min < z1 < z1max

1 i f z1 � z1max;

and for the inductor current iL = z2 by

µz2min(z2) =

8
<

:

1 i f z2  z2min
z2max�z2

z2max�z2min
i f z2min < z2 < z2max

1 i f z2 � z2max

µz2max(z2) =

8
<

:

0 i f z2  z2min
1�µz2min

i f z2min < z1 < z2max

1 i f z2 � z2max.

The normalized weights hi are given by

h1(z1,z2) = µz1min(z1)µz2min(z2), h2(z1,z2) = µz1min(z1)µz2max(z2),
h3(z1,z2) = µz1max(z1)µz2min(z2), h4(z1,z2) = µz1max(z1)µz2max(z2).

Thus, the Takagi-Sugeno fuzzy model for the buck-boost converter, considering r = 4, A constant and
d = u(t) is given by

ẋ(t) = Ax(t)+
r

Â
i=1

hi(z1,z2)Bi

!
d (4.22)

y(t) =
r

Â
i=1

hi(z1,z2)Cix(t).

4.4 Observers design

A state observer is a dynamic system that estimates state variables or parameters from available measure-
ments. Observers, also called virtual sensors, are widely used because they estimate the system variables
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that are not measurable by using mathematical algorithms and available measurements. An advantage
of the observer is that it can detect and locate faults in the system. In addition, it is a systematic design
procedure, which facilitates its implementation and execution in real time.

The precise mathematical model of the system to be estimated is a key point in the design since the
observer recovers the behavior of the real system from its model using a closed loop scheme. (Lopez
et al., 2015; Téllez-Anguiano et al., 2017; Heras-Cervantes et al., 2016). The general dynamic observer
for estimating the states is

˙̂x(t) = Ax̂+Bu(t)| {z }
Predictor

+L(y(t)� ŷ(t))| {z }
Corrector

, (4.23)

where x̂ in Rn represents the state estimate for all time t > t0 and the estimated output is given by
ŷ(t) =Cx̂(t).

The system presented in (4.23) is also denoted as the Luenberger identity observer and is coupled with
the original process through the inputs and outputs, as shown in Fig. 4.12. The observer consists of two
parts: a predictive stage, based on the model of the observed system, and a corrective stage, formed by
the estimation error e(t) = y(t)� ŷ(t), i.e., the difference between the measurable and estimated outputs.

Fig. 4.12: General scheme of a state observer

4.4.1 Takagi-Sugeno fuzzy observer

Combining the Takagi-Sugeno fuzzy model of a nonlinear system with the Luenberger observer, the
general structure of a fuzzy observer is obtained, according to Tanaka et al. (1998), as

˙̂x(t) =
r
Â

i=1
hi(z(t))[Aibx(t)+Biu(t)+Kie]

by(t) =
r
Â

i=1
hi(z(t))Cibx(t).

(4.24)
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In Nguyen et al. (2019), the authors demonstrate the stability of the fuzzy observer as long as there is
a P matrix that satisfies the linear matrix inequalities (LMIs) given by

P > 0
Ni > 0

AT
i P�CT

i NT
i +PAi�NiCi < 0

AT
i P�CT

j NT
i +PAi�NiCj +PAT

j �CT
i NT

j +PA j�NjCi < 0,

(4.25)

where P and Ni are positive definite matrices P > 0, Ni > 0 and the condition should be hold for all i < j.
Observer gains are defined by the LMI’s system solution defined in

Ki = P�1
o Ni. (4.26)

4.4.2 Sliding-Mode fuzzy observer

The sliding-mode fuzzy observer is based on the Luenberger observer for linear systems and the fuzzy
observer proposed by Tanaka et al. (1998). By using a fuzzy observer, sliding-mode local observers can
be built for each linear subsystem. Each observer is associated with a fuzzy rule i defined by

Fuzzy Rule i:
if z1(t) is Mi1 and ... and zp(t) is Mip

Then
˙̂x(t) = Aix̂(t)+Biu(t)+Kie+ji(t)

ŷ =Cix̂(t).
(4.27)

The final observer is given by the weighted sum of each subsystem, as shown in

˙̂x(t) =
r
Â

i=1
hi(z(t))(Aix̂(t)+Biu(t)+Ki(e)+ji(t))

ŷ(t) =
r
Â

i=1
hi(z(t))(Cx̂(t)).

(4.28)

The term ji(t) is the discontinuous vector of sliding modes for the subsystem i, defined by

ji(t) = E f isign(Piẽ(t)), (4.29)

where the sign function of Piẽ(t) is calculated element by element, E f i > 0 a positive constant, Pi > 0
satisfies the Lyapunov equation, and the estimated state error ẽ is defined by

ẽ = x(t)� x̂(t). (4.30)
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4.4.3 Sliding-Mode Takagi-Sugeno fuzzy observer

From the Takagi-Sugeno observer presented in (4.24), according to Castillo et al. (2005), the correspond-
ing sliding-mode Takagi-Sugeno fuzzy observer is defined by

˙̂x(t) =
r
Â

i=1
hi(z(t))(Aix̂(t)+Biu(t)+Ki(e)+jT Si(t))

ŷ(t) =
r
Â

i=1
hi(z(t))(Cx̂(t)).

(4.31)

with the sliding vector jT Si(t) is defined as

jT
T Si(t) = sign( ˙̃eT Pi). (4.32)

is considered as the product between the estimation error derivative ˙̃e and a positive definite matrix Pi,
where the dynamic estimation error corresponds to the difference between the dynamic measured states
of the system and the dynamic states estimated by the sliding-mode fuzzy observer, as expressed in

˙̃e = ẋ(t)� ˙̂x(t). (4.33)

Since we are interested in the error approaching zero as t approaches infinity. According to the analysis
and design characteristics between the fuzzy observer and the sliding-mode fuzzy observer, the stability
and the matrix P are determined as in (4.25) and the gains Ki as in (4.26).

4.5 Design of the sliding-mode Takagi-Sugeno fuzzy observer for the boiler heating actuator

As mentioned, the buck-boost converter is the boiler heating actuator. According to the Takagi-Sugeno
fuzzy model for the buck-boost converter defined in (4.22), the corresponding fuzzy observer is defined
by

˙̂x = Ax(t)+
✓

4
Â

i=1
hi(z1,z2)Bi +jT Si(t)

◆
d

y(t) =
4
Â

i=1
hi(z1,z2)Cx(t).

(4.34)

The output matrix C is defined by

C=

✓
1 0
0 1

◆
, (4.35)

where the system outputs are vC and iL.
The block diagram of the buck-boost converter observer is shown in Fig. 4.13, where the fuzzy vari-

ables (z1, z2) are the states of the system (x1 = vC, x2 = iL), and the gains of the fuzzy observer are
defined as Kf and Kf .

According to the characteristics of the fuzzy model of the converter presented in (4.22), where the
state matrices A1, A2, A3 and A4 are identical, the LMI that guarantees the stability of the sliding-mode
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Fig. 4.13: Sliding-mode Takagi-Sugeno fuzzy observer for the buck-boost converter

fuzzy observer for the buck-boost converter is defined by

Pfaf > 0
A0Pfa�C0N0fa

+PfaA�NfaC < 0. (4.36)

Given the solution for Pfa , the gain Kf for the observer is determined by

Kf = P�1
fa

Nfa . (4.37)

4.5.1 Validation of the sliding-mode Takagi-Sugeno fuzzy observer for the heating actuator

The buck-boost converter (boiler heating actuator) observer is validated in simulation considering the
converter characteristics presented in Table 4.1. Figure 4.14 shows the observer convergence to the ca-
pacitor voltage vC under disturbances in the nominal input voltage (Vin = 180 V). In the observer simula-
tion at 0.1 s the input voltage Vin decreases 8.88% (Vin = 160 V) of its nominal value. At 0.2 s it increases
111.11% (Vin = 200 V) of its nominal value. In both cases it is shown that the observer ( ˙̂vC) converges to
the capacitor voltage vC measured in the real system. The observer presents a maximum estimation error
of 1.3 V and a minimum of 100 µ V.

Figure 4.15 shows the observer convergence to the inductor current iL under disturbances in the nom-
inal input voltage (Vin = 180V ). In 0.1 s the voltage Vin decreases 88.88% to Vin = 160 V, and in 0.2 s it
increases 111.11% Vin = 200 V. In both cases, it is shown that the observer ˙̂iL converges to the inductor
current iL of the nonlinear model. The observer presents a maximum estimation error of 394 mA and a
minimum error of 80 µA.

Figure 4.16 shows the observer’s convergence to the capacitor voltage under variations in the nominal
load (RL = 70.3 W ). At 0.1 s the load decreases 78.23% (RL = 55 W ), and at 0.2 s it increases 113.79%
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Table 4.1: Parameter of the buck-boost converter

Parameter Magnitude
Input voltage (Vcc) 180V
Output voltage (Vout) �229V
Inductor (L) 5µH
Capacitor (C) 78µF
Load (RL) 70.3W
Frequency ( f ) 20 kHz
Duty cycle (d) 0.56

Fig. 4.14: Observer response in the capacitor voltage vC under disturbances in the input voltage Vin

(RL = 80 W ). In both cases the observer (˙̂iL) converges to the capacitor voltage vC of the nonlinear model.
The observer has a maximum error of 1 V and a minimum error of 75 µV.

Figure 4.17 shows the observer’s convergence to the inductor current iL under variations in the nominal
magnitude of the load (RL = 70.3 W ). At 0.1 s the load decreases 78.23% (RL = 55 W ), and at 0.2 s it
increases 113.79% (RL = 80 W ). In both cases, the observer converges to the inductor current. The
observer presents a maximum error of 13 mA and a minimum error of 100 µA.

As can be observed, the estimated states by the fuzzy observer for the boiler actuator converges ade-
quately to the real states of the system under perturbations, allowing designing and implementing a fault
detection and diagnosis systems based on analytical redundancy.
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Fig. 4.15: Observer response for the inductor current iL under disturbances in the input voltage Vin

Fig. 4.16: Observer response for the capacitor voltage vC under load variations R

4.5.2 Fault detection for the boiler heating actuator

The block diagram of the FDI system for the boiler heating actuator for the distillation column is shown
in Fig. 4.18.

The FDI system for the heating actuator is based on a bank of two fuzzy observers. The inputs are the
inductor current iL for Observer 1 and the capacitor voltage vC for Observer 2. The difference between
the estimates of both observers allows detecting and diagnosing the type of fault in the converter. The
difference between the estimates of both observers allows detecting and diagnosing the faults in the
converter. The four generated residuals are
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Fig. 4.17: Observer response in the inductor current iL under load variations R

Fig. 4.18: FDI system for the boiler heating actuator

riL1 = iL� îLO1, rvC1 = vC� v̂CO1
riL2 = iL� îLO2, rvC2 = vC� v̂CO2,

(4.38)

where îL0i and v̂CL0i for i = 1,2 are the outputs estimated by the observers. The residuals evaluation
provides the symptoms for the diagnosis of the faults in the converter according to the fault signature
presented in Table 4.2.

The FDI system detects faults in the nominal load RL. Furthermore, it is sensitive to variations in the
nominal supply voltage Vcc, detecting the conditions and faults below.
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Table 4.2: Fault signature

Fault F1 F2 F3 F4 F5 F6 F7 F8
riL1 -1 0 1 -1 1 -1 1 -1
riL2 0 0 1 -1 1 - 1 1 0
rvC1 1 -1 1 -1 1 -1 1 -1
rvC2 1 -1 0 0 1 -1 -1 1

• F1: Decrease in the nominal supply voltage of the converter Vcc
• F2: Increase in the nominal supply voltage of the converter Vcc
• F3: Decrease in the magnitude of the nominal load RL
• F4: Increase in the magnitude of the nominal load RL
• F5: Decrease in the nominal power supply voltage of the converter Vcc and decrease in the magnitude

of the nominal load RL
• F6: Increase in the nominal power supply voltage of the converter Vcc and increase in the magnitude

of the nominal load RL
• F7: Increase in the nominal power supply voltage of the converter Vcc and decrease in the magnitude

of the nominal load RL
• F8: Decrease in the nominal power supply voltage of the converter Vcc and increase in the magnitude

of the nominal load RL

4.6 Experimental validation of the FDI system

The experimental validation of the FDI system is performed for a buck-boost converter that regulates
the voltage to a heating resistance of 350 W for the EDF-1000 distillation column boiler. The observer
design parameters for the FDI system are determined for the case study presented in Table 4.1.

The FDI system is designed assuming that variations in the converter input voltage are caused mainly
by the input voltage (line voltage) resulting in thermal shocks if the power supplied to the boiler increases
or the slowness of the process dynamics if the power supplied in the heating resistance is low. Load
variations are usually caused by degradation or manufacturing of the heating resistance.

The structure of the observer system for the buck-boost converter is expressed by

ẋ(t) = Ax(t)+
✓

4
Â

i=1
hi(z1,z2)Bi

◆
d(t)

y(t) =
4
Â

i=1
hi(z1,z2)Cix(t).

(4.39)

According to the characteristics of the fuzzy system, where A1,A2,A3,A4 = A, the LMIs to determine
the stability of the system are given by

P > 0
AT P�CT NT +PA�NC < 0.. (4.40)
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Thus, given the solution for P, the observer gain K is determined by

K = P�1N. (4.41)

The FDI experimental validation for the process presented in Table 4.1 considers faults in the nominal
load value, variations in the converter input voltage and the combination of both simultaneous faults.

4.6.1 Test 1: Load decrease

In order to validate the FDI behavior under heating resistance variations, a decrease of 50% of its nominal
value (38 W ) occurs at 0.1s.

Figure 4.19 presents the observers’ dynamics when the load decrease fault occurs. The observer with
the iL reference, Observer 1, presents a greater difference concerning the capacitor voltage value when
a load decrease occurs, causing a residue of greater magnitude with respect to the observer with the vC
reference, Observer 2.

Inductor current

Capacitor voltage

Fig. 4.19: Observers’ estimation concerning a nominal load decrease

Figure 4.20 shows the residuals generated without fault from 0 to 0.1 s and under a fault’s presence
after 0.1 s. It can be observed that the residuals generated by Observer 1, with the iL reference, exceed
the decision thresholds, fixed experimentally according to the process dynamics, after the load decrease.

Figure 4.21 shows the symptoms generated when evaluating the residuals with the defined thresholds.
According to the Table 4.2, the FDI system adequately identifies the F3 fault (nominal load decrease).
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Fig. 4.20: Residuals compared to the fixed decision thresholds under a nominal load decrease
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Fig. 4.21: Symptoms obtained under a nominal load decrease

4.6.2 Test 2: Input voltage decrease

In the second validation test, a disturbance in the input voltage is considered. A 16.66% decrease from
its nominal value is generated at 0.1 s. Figure 4.22 shows that Observer 1 has a greater difference con-
sidering the inductor current and the capacitor voltage that Observer 2.

Figure 4.23 shows the residuals generated without fault from 0 to 0.1 s and under an input voltage
decrease after 0.1 s. It can be observed that only the residuals generated by Observer 2 for the inductor
current are minor than the decision thresholds fixed experimentally according to the process dynamics.
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Inductor current

Capacitor voltage

Fig. 4.22: Estimation using observer 1 and 2 considering an input voltage decrease

Fig. 4.23: Residuals compared to the fixed decision thresholds under an input voltage decrease

Figure 4.24 shows the symptoms generated when evaluating the residuals with the defined thresholds,
and it can be observed that at 0.1 s the magnitude of the symptoms changes according to the difference
between the observers estimation with respect to the real value. Symptom 2 for the vC obtained by
Observer 2 has a transient response that switches between 0 and 1 because the response of Observer 2
for the inductor current iL presents an overdamped transient response. By evaluating the symptoms and
according to Table 4.2 it can be determined that a fault exists, which corresponds to a decrease in the
input voltage.
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Fig. 4.24: Symptoms obtained under an input voltage decrease

4.6.3 Test 3: Simultaneous faults

A third experiment is performed where a 50% increase in the nominal value of the load in addition to a
16.6% increase in the actuator input voltage. Figure 4.25 shows the dynamics of the observers.

Inductor current

Capacitor voltage

Fig. 4.25: Observers’ estimation concerning under an input voltage and load decrease

At 0.1s the combined fault is presented. Both observers lose convergence with the inductor current,
iL. Observer 2 maintains convergence with the capacitor voltage despite the multiple faults. Figure 4.26
shows the residuals obtained for each observer estimation under multiple faults in the system.

The generated residuals show similar behavior with difference values below the selected thresholds.
Accordingly, the symptoms that appear in Fig. 4.27 are all negative. By comparing these signatures with
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Fig. 4.26: Residuals obtained under an input voltage and load decrease

the fault shown in Table 4.2, it can be concluded that a multiple fault corresponding to the combination
of load and input voltage increases exists.
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Fig. 4.27: Symptoms obtained under simultaneous input voltage and load decrease

4.7 Conclusions

In this chapter, an FDI system for a buck-boost converter acting as the boiler heating actuator for the
EDF-1000 distillation pilot plant was implemented. The buck-boost converter function is to regulate the
electrical power W of a heating resistance through its duty cycle d. For the FDI system, two sliding-mode
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Takagi-Sugeno fuzzy observers were designed, both observers estimate the converter output voltage vC
and the inductor current, iL.

This FDI system allows obtaining four residuals, riL1, riL2, rvC1 and rvC2, which determine the symp-
toms to indicate the presence or absence of faults.

According to the results obtained in simulation and in experimentation, the observers with sliding
modes have acceptable results with small convergence times, around 800 µs.

It is feasible to experimentally design an FDI scheme for an EDF-100 distillation pilot plant modeled
by a Takagi-Sugeno type structure and techniques based on the model, such as the use of observers with
sliding modes.
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Chapter 5

Adaptive multivariate degradation model for remaining useful life
prediction

Adriana Villalón Falcón1, Alberto Prieto Moreno1, Marcos Quiñones-Grueiro2, and Orestes
Llanes-Santiago1

Abstract Accuracy in predicting the remaining useful life (RUL) of industrial systems is crucial for
maintenance tasks. Deep learning-based methods are among the most widely used for RUL prediction
because of their ability to learn complex non-linear relationships between system measurements and
RUL. After training, however, these models are incapable of adapting to systems with dynamic behavior
that changes over time. On the other hand, prognostic methods based on degradation models, while
capable of adapting to these changes, are usually designed to model a single variable. In this chapter,
an adaptive method for predicting RUL based on modeling the behavior of multiple variables during
degradation is proposed. The information from each model is combined to predict the RUL of the system.
A new performance metric is proposed to evaluate the prediction models by periodically calculating
the prediction error and establishing a direct relationship between RUL prediction and maintenance
planning. The proposed method is applied to the NASA Commercial Modular Aero-Propulsion System
Simulation (C-MAPSS) data set, and demonstrates satisfactory results.

Nomenclature

aRULi,t weight of RUL (remaining useful life) prediction error of system i at time t
CDF�1 inverse cumulative distribution function
EOLi true EOL (end of life) of system i
EOL⇤j,i,t predicted EOL with feature j of system i at time t
ETj EOL threshold of feature j
f j degradation model of feature j
N number of systems
p vector of parameters of f
pL,pU lower and upper bounds of parameters p
Rs constrained region of the parameter space
RULi,t true RUL of system i at time t

1Universidad Tecnológica de La Habana José Antonio Echeverrı́a, CUJAE, La Habana, Cuba,
e-mail: avillalon@automatica.cujae.edu.cu, albprieto@automatica.cujae.edu.cu and orestes@tesla.cujae.edu.cu
2Institute for Software Integrated Systems, Vanderbilt University, Nashville, Tennessee, USA, e-mail: marcos.quinones.grueiro@vanderbilt.edu
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RUL⇤i,t predicted RUL of system i at time t
RUL⇤j,i,t predicted RUL with feature j of system i at time t
RULw value of RUL from which the precision of the RUL prediction is considered critical
RWMSE global prediction error of a set of systems
RWMSEi global prediction error of system i
td detection time of the degradation process
T number of observations
V number of features
w j weight of feature j
y j feature j

5.1 Introduction

Deciding the amount of time that industrial facilities can continue operating and maintaining quantitative
and qualitative production standards is generally based on corrective or preventive maintenance strate-
gies. Both maintenance approaches considerably increase production costs and product delivery times.
Predictive maintenance, on the other hand, aims to minimize the downtime of systems and maximize
their useful life by predicting when a system cannot operate satisfactorily anymore (Niu, 2017; Kim
et al., 2016; Lei et al., 2018).

The planning of the predictive maintenance tasks and their correct execution to a large extent depends
on the prediction of the RUL. Because of the large amount of data provided by data acquisition systems,
many methods capable of providing accurate predictions of RUL from measurements of process variables
have been developed.

Among the most widely used data-driven methods are deep neural networks (DNNs), because of their
ability to model complex nonlinear relationships (Ellefsen et al., 2018; Guo et al., 2017; Li et al., 2018;
Yang et al., 2019; Zheng et al., 2017; Wu et al., 2018). Some network architectures have been designed
to consider temporal features that reflect the degradation of systems (Ellefsen et al., 2018; Zheng et al.,
2017; Wu et al., 2018). Configuring a DNN takes time, however, and is computationally expensive.
After training, a fixed model is obtained that cannot adapt to the system changing conditions over time.
If system degradation exhibits new behavior, the DNN must be trained again.

Methods based on degradation models predict the RUL by adapting to the systems’ conditions during
the degradation process (Li et al., 2015; Feng et al., 2016; Lei et al., 2016; Ali et al., 2018; Saidi et al.,
2017; Yan et al., 2020). These methods only model one variable. The prediction of the RUL, however,
is not determined by one variable but by the simultaneous evolution of multiple variables. Therefore,
multivariable analysis is required. This chapter proposes an adaptive method for predicting the RUL
based on modeling the behavior of features that provide significant information during the degradation
process. The information from each model is considered for predicting the RUL of the system.

An important element in the configuration of prognostic systems is the selection of the adequate mod-
els to predict the RUL because of the constant development of new prediction methods designed for
different applications. Although sometimes the selection of a method is based on a particular applica-
tion, often it is necessary to compare several models according to their performance in the prediction
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task. Therefore, performance metrics are used to assess the RUL prediction error. The most commonly
used performance metrics are related to the accuracy and precision of prognostic methods (Saxena et al.,
2008; Lei et al., 2018; Zeng et al., 2017). This chapter will focus on accuracy metrics, given their impor-
tance in prognostic performance. A wide range of metrics have been developed to measure the accuracy
of prognostic methods. Accuracy metrics quantify the similarity between the model prediction and true
measured values (Zeng et al., 2017). Generally, metrics compute the similarity as the difference between
the RUL predicted values (RUL∗) and true values (RUL), ∆ , also called prediction error (5.1):

∆ = RUL∗−RUL. (5.1)

Accuracy metrics are created by modifying (5.1) to add desired features for metrics based on the capabil-
ity of prognostic methods for supporting maintenance decisions. The most relevant features that metrics
include, ordered by their importance, are detailed below:

1. Overall performance. Accuracy must be measured over the lifetime of a system, capturing the predic-
tion error behavior. Some metrics have been used to measure the prediction error in an instant of the
system degradation. RUL prediction is a continuous process; thus, the evaluation of methods for this
purpose requires measuring how the prediction error changes over time. It is not enough to consider
the error at specific time instants as a unique evaluation measure.

2. Metric value in time units. Accuracy values must be defined in time units according to the RUL mea-
surement (i.e., hour, day, cycle). The time unit of the prediction is vital for measuring the accuracy of
prognostic methods, which allows establishing a connection to equipment operation and maintenance
planning. Some metrics provide normalized values, generally in the range [0,1], which mask the pre-
diction time unit. Measures such as mean and median are commonly used to quantize the prediction
error over a time period.

3. Time-based penalization. Decision-making is critical towards the end of life of a piece of equipment.
Therefore, a penalization factor must be added to attribute greater importance to prediction errors
made near the end of life. Usually, a weight function penalizes the error given the time instant at
which the prediction is made. A linear function (5.2) and a Gaussian kernel (5.3) have been used as
penalization functions (Saxena et al., 2008):

α(t) =
t

T
∑

t=t0
t
, (5.2)

where t0 and T are the start and end of life, respectively, and

α(t) = exp

(
−(t−T )2

2(T
2 )

2

)
. (5.3)

4. Late prediction-based penalization. Late predictions (positive ∆ ) are penalized more than early pre-
dictions (negative ∆ ) because of the impact on maintenance. Positive prediction errors are made by
predicting a larger RUL value than the true RUL, causing the system to reach the end of life before
maintenance is scheduled. Conversely, negative prediction errors favor the execution of early main-
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tenance. Commonly, a function that receives a prediction error and retrieves a value related to its
magnitude and sign is used. An exponential function (5.4) has been used as a penalization function:

z (t) =

8
<

:
exp

⇣
� D

j1

⌘
�1, if d < 0

exp
⇣

D
j2

⌘
�1, if d � 0

. (5.4)

A summary of how these features are included in the most relevant accuracy metrics is presented in
Table 5.2.

Table 5.2: Features of accuracy metrics

Metric Overall Value Time Late Prediction References
Performance in Time Units Penalization Penalization

Mean Absolute Error (MSE) Yes Yes No No (Zhang et al., 2019; Zhu et al.,
2018)

Exponential Transformed Accuracy (ETA) No Normalized No Yes (Lei et al., 2018)
Relative Accuracy (RA) No Normalized No No (Saxena et al., 2008)
Cumulative Relative Accuracy (CRA) Yes Normalized Yes No (Saxena et al., 2008)
Mean Squared Error (MSE) Yes Yes No No (Zeng et al., 2017; Di Maio and

Zio, 2016)
Root Mean Squared Error (RMSE) Yes Yes No No (Zeng et al., 2017; Di Maio and

Zio, 2016; Lei et al., 2018)
Mean Absolute Percentage Error (MAPE) Yes Normalized No No (Zeng et al., 2017; Di Maio and

Zio, 2016; Zhang et al., 2019)
Sample Mean Error (SME) Yes Yes No No (Zeng et al., 2017; Di Maio and

Zio, 2016)
Sample Median Error (SMeE) Yes Yes No No (Zeng et al., 2017; Di Maio and

Zio, 2016)
Timeliness Weighted Error Bias (TWEB) Yes Normalized Yes Yes (Zeng et al., 2017; Di Maio and

Zio, 2016)

A key element for performance measurement and selection of RUL prediction methods is their accu-
racy as systems approach to the end of their useful life. Thus, time-based penalization is an important
feature in accuracy metrics. Although penalization functions presented in (5.2) and (5.3) increase the
penalization as time passes, they do not include information about the criticality of the maintenance task
according to the specific application. Therefore, a new accuracy metric for evaluating the performance
of RUL prediction methods, which includes the first three features presented in Table 5.2 and captures
knowledge for supporting decision-making, is proposed in this chapter.

The first main contribution of this chapter is the proposal of a multivariate degradation model for pre-
dicting the RUL, which adapts to system conditions. In the construction of the model, only the variables
that contribute significantly to the prognostic task are used. In addition, the reconfiguration of the prog-
nostic model does not require a large amount of data. The second main contribution of this chapter is
the proposal of a new performance metric for RUL prediction models that evaluates the prediction error
throughout the degradation process in time units and considers task-specific knowledge for decision-
making support.
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The organization of the chapter is as follows. In Sect. 5.2, the new metric for the comparison of RUL
prediction models is presented. Sect. 5.3 details the proposed method for predicting RUL. Sect. 5.4
validates the proposals by using the NASA Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) benchmark (Saxena et al., 2008). Finally, the conclusions and several considerations for
future research are presented.

5.2 Performance metric

Predictive maintenance tasks should be performed when the longest operating time of a system has been
reached and before the end of its useful life to avoid unexpected stops of the production lines. Therefore,
RUL prediction methods should be focused on minimizing the prediction error, fundamentally when
a system approaches the end of its useful life. Thus, this chapter proposes a metric that periodically
considers the error during the degradation process and includes time-based penalization, while keeping
error values in time units.

5.2.1 Proposed performance metric

The proposed metric is defined below.

Definition 5.1. Root Weighted Mean Squared Error
Given a set of representative systems of the same type of system E, {Ei 2 E : i = 1,2, ...,N} with

cardinality N and each system consisting of a measurement set of size m with the respective time-stamped
remaining useful life labels (Ei = {Yi 2¬m⇥T ,RULi 2¬T}), the Root Weighted Mean Squared Error
(RWMSE) for E is obtained as follows:

RWMSE =

N
Â

i=1
RWMSEi

N
, (5.5)

where

RWMSEi =

vuuuuut

T
Â

t=1
aRULi,t (RUL⇤i,t�RULi,t)

2

T
Â

t=1
aRULi,t

(5.6)

is a weighted average of the prediction errors during the degradation of system i, RUL⇤i,t and RULi,t
are the predicted and true RULs at instant t during the degradation of system i, respectively; T is the
total time over which the measurements were obtained; and aRULi,t is the weight assigned to the RUL
prediction error of system i at instant t.

The basis for this metric is to find a way to determine aRULi,t . This factor should penalize more the
prediction error as the system approaches the end of its useful life and less when it is further away from
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ceasing to work properly. Several types of functions could be used to determine aRULi,t . In this chapter,
the exponential function given in (5.7) is selected, where a, b and c are the parameters of the function.
This function places greater weight on prediction errors near the end of the systems life:

aRULi,t = aexp(bx)+ c. (5.7)

The next step is to determine the parameters a, b and c of this function. In order to establish a rela-
tionship between aRULi,t and RULi,t , x is defined according to the following equation:

x = RULi,t�RULw, (5.8)

where RULw (w for warning) is the value of RUL from which the precision of the RUL prediction is
considered critical, so the weight assigned to the error is greater from that moment on (see Fig. 5.1). In
practice, this value can be defined by experts, or it can be assigned based on the knowledge acquired
from data. The behavior of aRULi,t corresponds to

8
<

:

aRULi,t < a+ c, if RULi,t > RULw
aRULi,t = a+ c, if RULi,t = RULw
aRULi,t > a+ c, if RULi,t < RULw.

(5.9)

Fig. 5.1: Region of greater precision in the RUL prediction

Conditions on the parameters are a � 0 and c = 0 such that the effects of errors do not cancel each
other and that each error contributes to the average, regardless of the time remaining from the prediction
instant to the system end of life. Moreover, a = 1 to differentiate the weights assigned to both sides of
RULw. By substituting the values assigned to the parameters in the inequalities (5.9), it is verified that
the stated requirements are met:

⇢
aRULi,t � 1, if RULi,t  RULw

0 < aRULi,t < 1, if RULi,t > RULw.
(5.10)
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The scaling parameter b remains to be set. In general, aRULi,t should increase as the RUL decreases.
Therefore, b 2 R�. If b = �1 is considered, (5.7) would present a sudden change at RULw, assigning a
very high weight when RULi,t = 0 and a very low weight to all errors when RULi,t > RULw. On the other
hand, aRULi,t should present a smooth shape, gradually varying as it approaches RULi,t = 0. Therefore,
the smooth shape is guaranteed by selecting

b =
�1

RULw
, (5.11)

where the condition RULw > 1 must be satisfied in order to obtain the desired behavior of the weight
function.

Figure. 5.2 shows the behaviors of two weight functions with different values of b for three different
RULw values.

(a) (b)

Fig. 5.2: Weight functions for RULw = 10,30,50: (a) b =�1 and (b) b =
�1

RULw

Finally, the weight function obtained is

aRULi,t = exp
✓

1� RULi,t

RULw

◆
. (5.12)

Applying a weighted average approach to the prediction errors by using (5.12) as the weight function
allows the RWMSE metric to assess the performance of a model by taking into account the prediction
accuracy during the entire degradation period. This metric allows the comparison of several prediction
methods through a single value.

5.3 Procedure for RUL prediction

In this section, a procedure for RUL prediction is presented. Once a deviation in some characteristic
parameter of the system has been detected, it is considered that the degradation of the system starts until
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the end of its useful life. From the measurements of the system variables, it is possible to obtain a model
for predicting how these variables will change with time based on the system behavior. A threshold for
each variable in the system is defined to indicate the end of its useful life. The RUL of the system is
determined by the time it takes for the variables reaching their corresponding predefined threshold. An
advantage of the proposed degradation model is that it is adaptive. In this way, the accuracy of the RUL
prediction may increase as more information is acquired. The proposed procedure is shown in Fig. 5.3.
The configuration steps for this procedure are presented in Algorithm 1. A detailed explanation of each
step will be given below.

Fig. 5.3: Proposed procedure for RUL prediction

Algorithm 1 Off-line procedure
1. Apply preprocessing techniques to raw measurements of system variables to obtain representative
features of the degradation process of the system.
for all features do

2. Select the model structure that best describes its behavior during the degradation process.
3. Define constraints for the selected model structure to improve degradation model prediction.
4. Obtain EOL threshold and prediction model for RUL.

end for
5. Obtain features weights for weighted average to predict the system RUL.
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5.3.1 Preprocessing

The preprocessing stage is essential to obtain representative data of the degradation process. The data to
be used in the configuration process should describe the degradation process from the moment a deviation
from the nominal behavior is detected until the end of the system useful life. Preprocessing techniques
are applied to extract the data relevant to the prediction model. Among the most used preprocessing
techniques are:

1. Detection and removal of outliers
2. Filtering
3. Selection or extraction of features from the original variables.

In prognostics, modeling the degradation process of a system from data requires the features to reflect
the progress of the degradation. If the behavior of a feature during the degradation process is stationary
or constant, then it does not significantly help to predict the RUL. Therefore, features that are selected
to model the degradation process should present progressive changes. Thus, metrics have been defined
to select suitable prognostic features. Some of these metrics are monotonicity, prognosability and trend-
ability (Coble, 2010). These metrics have been widely used to compare candidate prognostic features to
determine which subset is most useful for individual-based prognostics (Coble and Hines, 2009; Coble,
2010; Ali et al., 2015; Liao et al., 2016; Saidi et al., 2017). Their values range from 0 to 1 where 0
indicates that the feature is not suitable for prognostics.

• Monotonicity quantifies monotonic trends as the system evolves toward failure (Coble, 2010). As a
system gets progressively closer to failure, a suitable prognostic feature typically shows a monotonic
trend. Conversely, any feature with a non-monotonic trend is less suitable. The formula to compute
monotonicity is

Monotonicity =
1
N

N

Â
i=1

����
PD�ND

T � l

����, (5.13)

where PD and ND are the number of positive and negative Dyi differences, respectively; Dyi = yi(t +
l)� yi(t) are the T � l differences for each system; yi represents the measurements of a feature of the
system i; l is the number of data points used to calculate one difference; T is the number of instants of
system i; and N is the number of systems.

• Prognosability is a measure of the variability of a feature at failure based on the trajectories of several
run-to-failure experiments (Coble, 2010). A more prognosable feature has less variation at failure
relative to the range between its initial and final values. As a system gets progressively closer to
failure, a suitable prognostic feature is typically highly prognosable. Conversely, any feature that is
non-prognosable is less suitable. The formula to compute prognosability is

Prognosability = exp
✓
� s(yi(T ))

µ(|yi(T )� yi(1)|)

◆
, i = 1, ...,N. (5.14)

• Trendability is a measure of similarity between the trajectories of a feature measured in several run-to-
failure experiments (Coble, 2010). A more trendable feature has trajectories with the same underlying
shape. As a system moves progressively closer to failure, a suitable prognostic feature is typically
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highly trendable. Conversely, any feature that is non-trendable is less suitable. The formula to compute
trendability is

Trendability = min
i, j

∣∣corr(yi,y j)
∣∣ , i, j = 1, ...,N, (5.15)

where

corr(yi,y j) =
1
T

T
∑

t=1
(yit−µ(yi))(y jt−µ(y j))

σ(yi)σ(y j)
. (5.16)

When yi and y j have different lengths, the shorter vector is resampled to match the length of the
longer vector. To facilitate this process, their time vectors are first normalized to percent lifetime: 0%
to 100%.

By defining a fitness function as a weighted sum of the three metrics

f itness = wm Monotonicity+wp Prognosability+wt Trendability, (5.17)

the features can be selected. The constants wm, wp and wt weigh the importance of each metric in the
selection of the features.

5.3.2 Degradation modeling

For degradation modeling, gradual degradation under invariant operational conditions is assumed, as
well as the system working under invariant operational conditions during its useful life. The system
degradation model is based on the deterioration of each previously selected feature, as shown in Fig. 5.3.
The parameters of the degradation model corresponding to each feature are adjusted according to the
behavior of the variable by applying an on-line procedure (presented in Sect. 5.3.4) and also taking into
account the model structure selected from the historical data set.

5.3.2.1 Model structure

A key element in modeling the behavior of each single feature is the selection of the model structure.
Possible structures can range from the simplicity of a linear model to the complexity of a deep neural net-
work. For single variable modeling, however, the selection should always focus on the simplest possible
structure.

In this work, the following model structures are considered because of their simplicity:

Linear: f (t,p) = y = p1t + p2 (5.18)
Quadratic: f (t,p) = y = p1t2 + p2t + p3 (5.19)

Exponential: f (t,p) = y = p1ep2t + p3, (5.20)
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where y and t are the dependent and independent terms, respectively, and p = [p1, p2, p3] is the vector
of parameters of f to be fitted. As a measure of the error made in estimating a variable during the
degradation process, the root of the mean squared error (RMSE) is used:

RMSE(y,p) =

vuuut
T
Â

t=td
( f (t,p)� yt)

2

T
, (5.21)

where td is the detection time of the degradation process, yt is the expected value at instant t, and T is
the total number of observations. Figure 5.4 shows an example of the response of the models obtained
when fitting these structures to the data of an artificial feature.

Fig. 5.4: Fit of different structures to the data of a variable

The structure for modeling each feature is selected independently since each feature may have a dif-
ferent evolution during the degradation of the system. Previous studies, which mainly focused on the
construction of system health indices, present the exponential model on a recurring basis as part of the
probabilistic models used to describe the health of systems that have cumulative degradation (Ali et al.,
2018; Saidi et al., 2017; Dong et al., 2019).

5.3.2.2 Model constraints

Once a structure is selected, its ability to predict the future behavior of the degradation process is eval-
uated. While fitting a degradation model, both the fitting error of previous measurements and the pre-
diction error of future measurements are considered in this chapter. If the prediction error increases, it
would be necessary to constraint the parameter space of the model to reduce it. With the addition of
regularization constraints to the fitting function, a search region is generated where two requirements are
satisfied:

1. Minimize the model fit error for adapting to the current behavior of the feature during the degradation
process and
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2. Remove parameter values that introduce large errors in predicting future degradation behavior.

Fitting of the degradation model on-line is therefore presented as the following constrained optimiza-
tion problem:

min
p

RMSE(y,p)

s.t. p 2 Rs,
(5.22)

where y are the values of the features that represent the process degradation, Rs is the allowed region for
parameter values of the selected structure. Rs is defined based on historical data of similar systems.

The simplest constraint defines constant lower and upper limits for each parameter pi, creating what
is called a box constraint. The type of constraint, however, may vary depending on the structure defined
to model the degradation process. As the exponential structure is selected in this chapter to model the
degradation process of each single feature, it is necessary to delve into the analysis of constraints for this
type of structure.

Constraints for exponential structure

When analyzing the on-line response of the exponential degradation model, from the beginning of the
degradation process to the end of the system’s useful life, it is possible to see a wide range of model
behaviors. Figure 5.5 shows how a model fits and predicts the behavior of an artificial variable at three
instants during the degradation process (t = [94,124,164]).

Fig. 5.5: On-line fitting of an exponential model to the data of one variable

The need for a constrained parameter space when the model of the feature is adjusted on-line will
be explained based on Fig. 5.5. The fitting error for the feature shown validates the selection of the
exponential structure. The error made in the prediction, however, is high, mainly at the beginning of
the degradation process when there are few measurements of the variable. This is because the standard
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performance measure (5.21) only focuses on minimizing the fitting error. At the start of the degradation
process, the range of possible parameter values for which a good fit of the model is obtained is wide.
A small fitting error for the initial data does not guarantee a small prediction error, as is the case of the
model response for t = 94 and t = 124. The model response shows a constant behavior of the variable
for t = 94, indicating that the system is not degrading. When the model is updated at time t = 124, the
figure shows how the variable changes in response to the degradation process. The rate of degradation,
however, is much higher than the true one. Both responses therefore describe behaviors of the variable
that are not characteristic of the degradation process. When the acquired measurements of the variable
reflect the entire progress of the degradation of the system, the range of possible values of the parameters
decreases, and its response presents a better prediction. The primary objective of constraint enforcement
is therefore to decrease the range of possible values for the degradation model parameters when a small
amount of data is available.

The steps for configuring the constraints of the exponential structure (parameters p1, p2 and p3 of Eq.
(5.20)) are described below.

1. Characterize the historical behavior of the feature. It is necessary to adjust the parameters of the
degradation model in such a way that its response adjusts as much as possible to the behavior of the
feature through the entire degradation process.
Since the exponential structure is nonlinear, it is proposed to use the trust-region reflective method
(Coleman and Li, 1996b,a; Branch et al., 1999). Its main advantage is the speed of convergence. The
convergence depends, however, on the search region of the parameters. Therefore, it is proposed to
use the three-sigma procedure, presented in Algorithm 2, to reduce this region, starting from defining
upper and lower limits for the parameters and to obtain the values of the parameters of the degradation
model that characterize the historical behavior of the feature during the degradation process.

2. Define the constraint. By applying the procedure three-sigma setting tolerance = 10�5, a first box
constraint was obtained for the optimization problem stated in (5.22):

Rs = {p 2¬3 : pkL  pk  pkU , k = 1,2,3}. (5.23)

Once a constraint is defined, the fitting and prediction errors of the degradation model are evaluated.
To define the type of constraint for each parameter, it is necessary to analyze the relationship between
the parameters of the exponential structure (p1, p2 and p3) and the behavior of the feature. Figure 5.6
shows the influence of each parameter on the exponential model. Parameters p1 and p2 determine the
curvature of the model, so they are related to the rate of change of the feature. Similar systems can
present different degrees of degradation, resulting in degradation models with different values of p1
and p2. The parameter p3 represents the position of the asymptote on the y-axis. Values of the feature
must be above or below this value, depending on the feature. Considering that the behavior of the
feature is stationary during the normal operation of the system, it is possible to estimate the parameter
p3 from measurements acquired before the start of the degradation process. Estimating the value of the
parameter p3 from the start of the degradation process incorporates stability to the process of fitting
the degradation model and, consequently, to the prediction of the RUL.

3. Estimation of p3. The value of p3 is estimated from the mean (µ) and the standard deviation (s ) of
the measurements before the start of the degradation process. Since p3 must function as an asymptote,
three possible estimators were considered:



98 Adriana Villalón Falcón, Alberto Prieto Moreno, Marcos Quiñones-Grueiro, and Orestes Llanes-Santiago

Fig. 5.6: Influence of the parameters p1, p2 and p3 on the behavior of the model. Two parameters are
held fixed in each row and the third parameter is varied

µ +s or µ�s (5.24)
µ +2s or µ�2s (5.25)
µ +3s or µ�3s . (5.26)

Algorithm 2 Procedure three-sigma to set the initial values of the degradation model parameters
1. Initialize the search region based on the relationship between parameters (pk, k = 1,2,3) and feature
measurements (y). To solve the optimization problem (5.22), the following constraint is considered:

(p1L0
, p1U0

) =

⇢
(0, inf), if y(T )� y(1)> 0
(� inf,0), if y(T )� y(1)< 0

(p2L0
, p2U0

) = (0, inf)
(p3L0

, p3U0
) = (min(y),max(y))

Rs = {pkL0
 pk  pkU0

}.

repeat
2. Obtain sets of parameters Pk by solving Eq.(5.22) considering Rs.
3. Create new limits:

pkLnew = µPk�3sPk

pkUnew = µPk +3sPk

Rs = {pkLnew  pk  pkUnew},
where µPk and sPk are the mean and standard deviation of the values of the set Pk.

until
���pkLnew� pkLprevious

���< tolerance and
���pkUnew� pkUprevious

���< tolerance
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according to the monotony of the feature during the degradation process. The estimation of the pa-
rameter p3 from the beginning of the degradation process also allows reducing the complexity of the
model.

4. Constraint for p1 and p2. From the values of the parameters of the degradation model for various sys-
tems, information is available about different degradation paths of similar systems, which is reflected
in the values of the parameters p1 and p2. With the values of each parameter, a first approach is to
define lower and upper limits for each parameter, creating what is called a box constraint. Figure5.7(a)
shows the model response of an artificial variable obtained by fitting the parameters in three different
instants of the degradation of a system. At the beginning of degradation process, when measurements
contain little information, the model responses obtained show future degradation paths that differ sig-
nificantly from those recorded.
If the different values of the degradation model parameters obtained for various systems are plotted, in
a two-dimensional space where each dimension corresponds to a parameter, as shown in Figure 5.7(b),
the distribution of the parameters does not correspond to the box constraints defined above. The figure
highlights three points that correspond to the values of p1 and p2 that generate the model responses
shown in Figure 5.7(a). If the distribution of these points is analyzed, it is clear that the point corre-
sponding to the model update at t = 94 is located in a corner of the box. The cluster of points shown
in Figure 5.7(b) is considered the space that contains the values of the parameters p1 and p2 that
characterize the degradation process of these systems. Any value of p1 and p2 generated by a point
outside this cloud generates a model response that does not accurately represent the degradation pro-
cess. Therefore, the constraint for p1 and p2 should be modeled using a region that conforms to the
way the values are arranged in this space.

(a) (b)

Fig. 5.7: Fitting the exponential model with a box constraint

A model based on support vector data description (SVDD) is proposed to model the constraint for the
parameters p1 and p2. SVDD allows creating a non-linear decision surface around a data set (Tax and
Dui, 2004). Given a set of training data {xi} 2 Rn, i = 1, ..., l, the following optimization problem is
solved:
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min
R,⃗q,⃗ξ

R2 +C
l

∑
i=1

ξi

s.t. ∥φ(xi)−q∥2 ≤ (R2 +ξi), i = 1, ..., l
ξi ≥ 0, i = 1, ..., l,

(5.27)

where φ(x) is a function mapping data to a higher dimensional space, ξ = {ξ1, ...,ξl}, ξi is the slack
variable of i-th training sample, and C > 0 is a user-defined parameter. After (5.27) is solved, a hyper-
spherical model is characterized by a center q and a radius R. A testing instance x is detected as an
outlier if

∥φ(x)−q∥2 > R2. (5.28)

From the values of the parameters p1 and p2, a SVDD model characterizes its distribution and, there-
fore, the behavior of the feature during the degradation process. The SVDD model does not, however,
guarantee that all points are within the hypersphere. Therefore, a threshold rth is added to R so that all
the degradation patterns are considered within the search region.
Taking into account the previous analysis, the constraint of the parameters p1 and p2 is defined by

Rs = {∥φ(p)−q∥ ≤ R+ rth} . (5.29)

Figure 5.8(a) shows the degradation model responses obtained by fitting the parameters in three in-
stants of the degradation of a system, using the constraint defined in (5.29). The system corresponds
to that represented in Fig. 5.7(a). Figure 5.8(b) represents the SVDD model that defines the constraint,
in which the points corresponding to the values of the parameters p1 and p2 are highlighted for the
model responses shown in Fig. 5.8(a). The constraint allows bringing the model’s response closer to
the real behavior of the feature because as the model is updated by decreasing the fitting error to the
acquired measurements, it is guaranteed that the values of the parameters p1 and p2 are within the
region defined by the SVDD model.

5.3.3 RUL prediction

In this section, the method for predicting the RUL and the degradation model defined in the previous
section is presented.

5.3.3.1 EOL threshold

The EOL threshold (ET ), or failure threshold as it is also known, is a value of the feature at which point
components or subsystems can be repaired or replaced immediately before the critical failure occurs
(Bregon and Daigle, 2019). In most cases, the ET is estimated based on the physical knowledge of the
system (Lei et al., 2016; Zhang et al., 2017; Yan et al., 2020). Expert knowledge, however, is not always
accessible, and this value is often difficult to determine. To address this issue, some works consider
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(a) (b)

Fig. 5.8: Fitting the exponential model with the SVDD constraint

statistics like the mean of the last measurements of multiple systems as an estimation of the failure
threshold (Liu et al., 2013). Since guaranteeing that these measurements follow a normal distribution for
every type of system is difficult, the mean is not always an adequate estimator. In this chapter, the ET is
estimated from the inverse cumulative distribution function of these measurements, with the assumption
that they follow a unimodal distribution.

From the historical data of N systems, the last measurement of each variable yT is obtained for each
system. The ET is determined as the value with probability 1� p that the feature reaches the threshold
during the system degradation:

ET =CDF�1(p), 0 p 1, (5.30)

where CDF�1 is the inverse cumulative distribution function of yi,T , i = 1, ...,N.
In the feature threshold configuration, several values of p must be considered according to the charac-

teristics of the data. To determine which value of p is best to obtain ET , the RMSE is used as a measure
of the prediction error of the EOL of the systems in the historical data:

RMSE =

vuuut
N
Â

i=1
(EOL⇤i,T �EOLi)

2

N
, (5.31)

where EOL⇤i,T is the predicted EOL of the system i at the last moment of the useful life T , EOLi is
the true EOL of the system i, and N is the number of systems. The value of EOLi is determined by the
duration of the useful life of the system. The value of p selected to determine the threshold has the lowest
prediction error.

In this work, the following definition for RUL included in the International Organization for Standard-
ization (ISO) 13381-1:2015 is used; see Definition 5.2.
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Definition 5.2. Remaining useful life . Remaining time before system’s health falls below a defined fail-
ure threshold (ISO, 2015).

Therefore, once the EOL has been predicted, the RUL is determined according to (5.32) with t be-
ing the time at which the prediction is made. The periodicity at which the RUL is predicted must be
determined, according to the criteria of experts.

Definition 5.3. Remaining useful life of a system considering a single feature. The remaining useful life
of a system at continuous time t depending on a single feature y j is

RUL⇤j,t = EOL⇤j,t� t (5.32)

where
EOL⇤j,t = in f{tk 2¬ : tk > t ^ f�1

j (tk) = ETj}, (5.33)

with ETj being a performance threshold.

5.3.3.2 Prediction model

The prediction of the EOL at each moment during the process degradation can be performed by evalu-
ating the degradation model in future instants until the estimated value exceeds the predefined thresh-
old. This operation, however, is computationally expensive and may introduce errors in the prediction
depending on the resolution of the degradation model evaluation. Conversely, if the inverse of the degra-
dation model is obtained, the EOL can be predicted by evaluating the threshold.

By taking into account that the degradation process is modeled using an exponential structure and
by evaluating (5.20) for the EOL prediction, (t,y) = (EOL⇤j,t ,ETj), the following expression for ETj is
obtained:

ETj = p1 exp(p2 EOL⇤j,t)+ p3. (5.34)

Thus, the prediction model is obtained by the inverse of the model represented in (5.34)

EOL⇤j,t =
ln(ETj�p3

p1
)

p2
. (5.35)

The parameters p1, p2 and p3 correspond to those estimated for the degradation model. Figure 5.9
shows the response of the prediction model that allows checking the inverse behavior of the degradation
model and visualizing the direct prediction of the EOL.

The explained procedure for the degradation modeling and the prediction of the EOL and the RUL is
implemented for each feature.

5.3.3.3 Weighted average

The prediction model for each feature provides information on the progress of the degradation according
to its effect on each one of them. The prediction of the RUL of the system should therefore reflect the
contribution of each feature. The RUL of the system is then determined by the weighted average of the
predicted RUL for each feature as established in (5.36).
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Fig. 5.9: Prediction model response

Definition 5.4. Remaining useful life of a system considering a set of features. The remaining useful life
of a system i at continuous time t depending on a set of V features is

RUL⇤i,t =

V
Â
j=1

w j RUL⇤j,t

V
(5.36)

where RUL⇤j,i,t is the RUL given feature j at time t and w j is a weight scalar assigned to feature j
according to its contribution in the prediction of the system’s RUL.

Therefore, the next step in the configuration is to determine the contribution of each feature. The
adjustment of the weights is presented as an optimization problem, where the objective is to minimize
the RUL prediction error. The proposed performance metric, defined in (5.5), is used to calculate the
RUL prediction error. The optimization problem is defined as

min
w j

RWMSE(RUL⇤j,t ,RULi,t ,w j)

s.t.
V
Â
j=1

w j = 1

w j  1,8 j.

(5.37)

In case of removing features from the weighted average, it is necessary to solve the optimization
problem in (5.37) again in order to satisfy its constraints.
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5.3.4 On-line procedure

After a configuration process, the prognostic procedure can be implemented to predict the RUL of a
system. The on-line procedure for predicting the RUL of a system, presented in Algorithm 3, is imple-
mented through a cumulative window approach. This approach requires the addition of two parameters:
minsize or minimum size of the window of observations used to fit the degradation model, and stride
or sampling time considered for updating the degradation model. As measurements are acquired, model
parameters are recalculated to adapt to the current state of system degradation.

Algorithm 3 On-line procedure for RUL prediction
Parameters: minsize signifies minimum size of the window of observations required to estimate the
parameters of a degradation model, and stride means sampling time considered for updating the degra-
dation model
Inputs: td is the degradation detection time, Rs is the constrained region of the parameter space, and
w is the weight vector that considers the importance of each feature for the accurate prediction of the
system RUL

Initialization: twindow td , Mwindow /0, nobs 0
repeat

Acquire measurements mt at time t
twindow twindow

S
t

Mwindow Mwindow
S

mt
nobs nobs+1
if nobs > minsize then

Preprocess Mwindow to obtain features Y
for all y j 2 Y do

Obtain f j given Mwindow by solving Eq. (5.22) considering Rs
Predict EOL at current time EOL⇤j,i,t for feature j
RUL⇤j,t  EOL⇤j,t� t

end for
Predict system RUL through Eq. (5.36) considering w.

end if
t t + stride

until system failure

5.4 Application of the proposal

In this section, the application of the proposal to the NASA Commercial Modular Aero-Propulsion Sys-
tem Simulation (C-MAPSS) is presented (Saxena et al., 2008). Furthermore, the proposed model is
compared with a state-of-the-art DNN-based model.
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5.4.1 Case study

The C-MAPSS prognostics’ case study is formed by four distinct data sets. Each one contains measure-
ments of 21 sensors and three operating conditions. Each data set considers degradation information
of several engines with both training and testing examples. To validate the proposal, the first data set
containing information about one operating condition (altitude 0 ft, throttle angle 100 deg and Mach 0)
and one type of failure (HPC degradation) is used. The data set contains a number of training engines
(100 engines: training (N)) with run-to-failure information and a number of testing engines (100 engines:
testing) with information terminating before a failure is observed.

Engines start operating with different degrees of initial wear but are considered healthy. As the number
of cycles increases, each engine starts to deteriorate until failure. The training data set contains run-to-
failure information for each engine. The testing data set contains temporal data up to a certain time before
the engine fails. The objective is to predict the RUL of testing engines (Saxena et al., 2008).

In the experiments considered here, the training set is used for both training and testing/validating the
procedure because the testing data set does not contain labeled information that can be used to verify the
proposed procedure’s performance.

5.4.2 Preprocessing

The training data set considered (FD001) is contaminated with noise, which makes analyzing the degra-
dation trend difficult. The presence of noise in the measurements hinders the RUL prediction; thus filter-
ing is applied as explained below.

Filtering. EWMA (exponential weighted moving average) filter is applied for removing noise. The
expression that describes the filter is

y0 = x0
yi = a xi +(1�a)yi�1

. (5.38)

where xi represents the original data vector, yi the filtered data vector, and a is the exponential percent-
age, defined as 2

l+1 , where l is the size of the window of observations to be filtered. For all variables,
l = 15 is used.

Feature selection. Feature selection is performed by evaluating the fitness function in (5.17) for each
variable and rejecting the variables with fitness below a predefined threshold. Monotonicity calculations
for all variables use l = 30. The constants wm, wp and wt for this application are set to 1 weighting equally
for each metric. A threshold equal to 1.5 is selected since a sum is used as fitness function (Coble, 2010).

Figure 5.10 shows each metric and the fitness score for each variable. Sensors 1, 5, 6, 9, 10, 14, 16,
17, 18, and 19 have a fitness score under 1.5, which means that they are not very useful for prognostics.
Therefore, these variables are not selected for modeling the degradation process.

Figure 5.11 shows the behavior of the variables used for modeling the degradation process for engine
1. These variables correspond to sensors 2, 3, 4, 7, 8, 11, 12, 13, 15, 20, and 21.
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Fig. 5.10: Results of the feature selection process

Fig. 5.11: Behavior of the selected variables to model the degradation process for engine 1.

5.4.3 Model training

Building each prediction model consists of selecting its structure as well as its constraints, establishing
the EOL threshold, and estimating the weight of the variables for predicting the RUL of each engine.
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5.4.3.1 Model structure

From the behavior of the variables selected in the preprocessing stage, the quadratic and exponential
structures are considered for modeling the degradation process. Figure 5.12 shows the fitting error of
both structures for the selected variables. The procedure presented in Sect. 5.3.2.2 is applied to fit the
exponential structure with box constraints. The fitting error is averaged for each variable of the 100 en-
gines of training data. The exponential structure is finally selected for modeling the degradation process
because of its lower fitting error compared with the quadratic structure.

Fig. 5.12: Fitting error of the degradation models for each variable with quadratic and exponential
structures. The error has been normalized with respect to the magnitude of each variable.

5.4.3.2 Model constraints

Estimation of p3. For each estimator presented in (5.24), (5.25), and (5.26), the exponential structure
prediction model of each variable was obtained. The fitting error of the degradation models (Fig. 5.13)
shows that the best estimator for the parameter p3 is µ +s or µ�s , depending on the monotony of the
variable.

Constraints for p1 and p2. The parameters obtained from the models in the estimation of p3 are used
to fit a SVDD model for each variable as a constraint for the parameters p1 and p2. In the SVDD model,
the Gaussian kernel is used as the mapping function f (5.39), with a parameter h that represents the
bandwidth of the Gaussian function.

f(p1, p2) = exp
✓
�khp1, p2ik2

h2

◆
. (5.39)
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Fig. 5.13: Fitting error for the degradation models with different estimators of p3. The error has been
normalized with respect to the magnitude of each variable.

The distribution of the parameters for each variable and the SVDD model obtained are shown in
Fig. 5.14. C and h in (5.27) and (5.39) for each SVDD model shown in Table 5.3. These parameters are
manually tuned such that all models remain within the decision surface, excluding the space that does
not contain previously fitted degradation models. Subsequently, the degradation models are readjusted
to validate the defined constraints (Fig. 5.15). The fitting error obtained with the new constraints may
vary with respect to the error obtained with the box constraints. It is important to emphasize that the
acceptable fitting error depends on the user. In that case, tuning the constraints can be accepted in order
to decrease the on-line prediction error.

Table 5.3: Values of the parameters of the SVDD model for each variable

Variable 2 3 4 7 8 11 12 13 15 20 21

C 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
h 2.3 2.7 2.4 2.3 2.5 2.3 2.3 2.3 2.6 2.3 2.2

5.4.3.3 EOL threshold

To select the threshold for each variable, the EOL prediction error is calculated for several values of
p, by using all degradation measurements. The values of p are 0.1, 0.3, and 0.5 since these are values
with which the probability of reaching the threshold is greater than or equal to 0.5. To this end, the EOL
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Fig. 5.14: Constraints of p1 and p2 for each variable.

Fig. 5.15: Fitting error of the degradation models for each variable with box constraints and SVDD. The
error has been normalized with respect to the magnitude of each variable
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estimation error of the engines of the training set is averaged for each variable. From the results shown
in Fig. 5.16, the criterion for determining the threshold for each variable is the value for p = 0.5.

Fig. 5.16: EOL prediction error at the time of failure

5.4.3.4 Features weights

Adjusting the features weights requires evaluating the RUL prediction error on-line. To do this, the
degradation models are fitted, and the RUL is predicted on-line for each variable of the 100 engines in
the training set. A first step, which is recommended for the comparison, is to equitably assign weights to
the variables and calculate the RUL prediction error. This value will serve as a reference for solving the
optimization problem presented in (5.37), which allows obtaining the weights that minimize the RUL
prediction error. Figure 5.17 represents the effect of the weight of the variables on the RUL prediction of
the system by comparing the prediction error before and after the optimization of the weights. It can be
observed that by optimizing the weights the combination of variables obtained significantly reduces the
prediction error of the RUL.

From the weights presented in Fig. 5.17, the contribution of each variable in the prediction of the
RUL can be determined. Thus, it is evident that variables 8 and 13 do not contribute significantly. These
variables can be removed from the prognostics model, and, in this case, the weight of the remaining
variables must be optimized again.
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Fig. 5.17: Influence of the weight of the variables on the prediction of the RUL of the system

5.4.4 Model validation

During the construction of the prediction model, it is possible to evaluate each step using the training
data. To validate the model, however, it is necessary to present data on the complete degradation process
of engines not used in training. Therefore, the k-fold cross-validation method is used to validate the
prediction model on the data of the 100 engines of the training set. For cross-validation, k = 10 is used,
while also employing in each partition 90 training engines and 10 testing engines.

The proposed method for estimating RUL is compared with a DNN model (Song et al., 2018). This
prediction model consists of the combination of two neural network structures: an autoencoder (AE) and
a bidirectional long short-term memory neural network (BLSTM). By assuming the values presented in
the chapter, the prediction model was implemented and the cross-validation method was applied. The
same partitions were used for both prediction models.

For each partition, the off-line procedure presented in Algorithm 1 is used for the construction of the
prediction model with the 90 engines in the training set. Algorithm 3 is implemented for the on-line RUL
prediction of the 10 engines in the testing set. The minimum size for the cumulative window is set to 30,
and the stride is set to 1, in order to compare the results with the DNN model.

The prediction error is calculated using the metric proposed in (5.5) with the value RULw = [30,40,50].
The prediction error for each partition is shown in Table 5.4.

The prediction errors of each model in each partition are compared by using the Wilcoxon statistical
test. The significance level (α) of the test is 0.05. Table 5.5 shows the p−value obtained when applying
the statistical test. The test results, p− value < α , show a significant difference between the prediction
errors of both models, in which the proposed model in this chapter presents the smaller error.

The results shown in Fig. 5.18 demonstrate that the proposed model has better accuracy in the predic-
tion of the RUL as the engines approach the end of their useful life.

Figure 5.19 shows the on-line fitting of the degradation model and the RUL prediction for variable
4 at three instants t = [102,132,162] during the degradation process of engine 1. At each instant, the
degradation model is updated with the acquired measurements, adapting to the engine conditions, and
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Table 5.4: RWMSE. RUL prediction error of the proposed prediction model and the DNN-based model
for each partition

RULw = 30 RULw = 40 RULw = 50

k Proposal BLSTM Proposal BLSTM Proposal BLSTM

1 8.81 10.51 10.11 12.32 10.92 12.97
2 8.56 10.30 10.54 12.44 12.01 13.32
3 7.36 8.59 8.87 10.56 9.98 11.43
4 8.81 12.66 10.30 14.75 11.30 15.92
5 7.45 10.51 8.97 12.60 10.10 13.66
6 8.92 9.56 10.93 11.68 12.41 12.91
7 10.52 10.25 12.99 12.36 14.83 13.67
8 7.14 10.66 7.98 12.08 8.56 12.83
9 10.27 12.27 11.58 15.16 12.75 16.52
10 6.67 14.21 7.80 15.85 8.59 16.52

average 8.45 10.95 10.00 12.98 11.15 13.98

Table 5.5: Results of applying the Wilcoxon test with a = 0.5

RULw = 30 RULw = 40 RULw = 50

p� value 1.16e-04 1.47e-04 6.92e-04

Fig. 5.18: Comparison of the RUL prediction error between the proposal and the DNN

progressively improving the RUL prediction. The predicted RUL for engine 1 throughout the degradation
process, obtained from the weighted average of the predicted RUL for each variable, is presented in
Fig. 5.20. The figure also presents the predicted RUL for engine 1 with the BLSTM neural network.
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Fig. 5.19: On-line fitting and prediction for variable 4 of engine 1

Fig. 5.20: RUL prediction for engine 1

5.5 Conclusion and future work

In this chapter, a new procedure is proposed to create RUL prediction models. To evaluate its effec-
tiveness, the C-MAPSS data set is used, with exponential degradation models. The prediction model
obtained is compared with a DNN-based model because of its widespread use in prediction tasks. Pre-
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diction models are compared using a performance metric, RWMSE, which is proposed to evaluate RUL
prediction models. This metric allows characterizing the evolution of the prediction error of the models
and links the prediction of the RUL with the planning of maintenance tasks. The following conclusions
can be stated based on the experimental results.

1. The prediction model adapts to the current conditions of the system during the degradation process,
allowing to increase the prediction precision as the degradation progresses.

2. Constraints based on SVDD models allow accurate modeling of the historical behavior of the degra-
dation process, which reduces the prediction error at the beginning of the degradation process when
there are few measurements available.

3. Multivariable analysis determines the influence of each variable on the prediction of RUL and mea-
sures the importance of each variable for the RUL prediction process.

In future research, the procedure will be applied to other systems that reflects exponential behavior
degradation. In addition, it will be extended to systems with other behaviors during their degradation
process. Precision metrics for prognostics will be also analyzed.
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Chapter 6

Leak localization in water distribution networks using machine learning
based on cosine features

Ildeberto Santos-Ruiz1, Francisco-Ronay López-Estrada1, Vicenç Puig2, and Guillermo
Valencia-Palomo3

Abstract Locating leaks in water distribution networks is vital in drinking water management. This
chapter presents a method for leak localization using pressure measurements modified by a nonlinear
transformation related to direction cosines in the pressure space. Direction cosines are used as input
variables in classifiers that locate leaks by associating them to the closest node in the distribution net-
work. The feature extraction process is derived from hyper-parameter optimization with k-NN classifiers,
but it is generalized to other classifiers based on supervised learning. The method was tested with physi-
cal measurements in some sectors of the Madrid network and synthetic data obtained by simulation with
EPANET on a model of the Hanoi network. Some comparisons with other machine learning techniques,
using raw pressures and pressure residuals, are performed to illustrate leak localization effectiveness
when considering directional features.

6.1 Introduction

Loss caused by leakage is an underlying problem in drinking water management, as about one third of
chemically treated water is lost globally because of leaks in distribution systems (OECD, 2016). Leaks
must be detected and located promptly to be repaired in a short time and minimize the volume leaked. The
leak localization problem becomes challenging because many leaks cannot be located visually because
of the leaking liquid seeping underground instead of emerging to the surface.

The leak management process in a Water Distribution Network (WDN) consists of several stages.
First, the leak must be perceived: the existence of water loss must be detected. If the leak is not visible,
then a small region enclosing the leak (a leakage hotspot) must be estimated using calculations based on
available hydraulic measurements. Second, to repair a leak, it must be accurately located using physical
inspection and specialized devices, e.g., a geophone and correlators (Pilcher et al., 2007; Puig et al.,
2017). The methods described in this chapter belong more to the prelocalization stage, which is intended

1Tecnológico Nacional de México / I.T. Tuxtla Gutiérrez, Carretera Panamericana S/N, 29050 Tuxtla Gutiérrez, Mexico,
e-mail: ildeberto.dr@tuxtla.tecnm.mx and frlopez@tuxtla.tecnm.mx
2Department of Automatic Control (ESAII), Universitat Politècnica de Catalunya UPC, Rambla de Sant Nebridi 10, 08222 Terrassa, Spain
e-mail: vicenc.puig@upc.edu
3Tecnológico Nacional de México, IT Hermosillo, Av. Tec. y Per. Poniente S/N, Hermosillo 83170, Mexico,
e-mail: gvalencia@hermosillo.tecnm.mx
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to locate the closest nodes to the leak. Determining these nodes is helpful for the operators to locate
the actual leak point in a short time. This task, however, is not trivial because of the following: small
number of sensor measurements available compared with a large number of possible leak locations,
the uncertainty in individual user consumption, and the noise and unpredictable transients that affect
the certainty of the measurements. These difficulties, among others, make locating leaks a challenging
problem; even with the results and achievements that will be discussed in the final sections, the leak
localization problem remains open.

The proposed method is based on pressure residuals, which are the difference between nominal pres-
sures (leak-free pressures, estimated from a network model) and current leaky pressures measured at
specific network sensing nodes. A substantial difference from other leak localization methods is that the
proposed method is not based on the magnitude of the residuals but on its direction, which is character-
ized by the so-called direction cosines.

The chapter first presents the state of the art that summarizes the most relevant previous works in this
area. A simplifying hypothesis in these works is that single leaks occur at the nodes. Although leaks can
appear anywhere in the network, this assumption simplifies the computation to estimate their position.

The leak localization problem is generally undetermined. Therefore, localization methods may fail
to isolate the correct leaky node. It is possible, however, to identify candidate leaky nodes close to
the actual leaky node, and it is essential to determine how good the predictability of each method is.
Therefore, after presenting the literature review, some metrics will be described to evaluate a specific leak
localization method and its effectiveness compared with other methods. The case studies used to validate
the proposed methods will then be presented. Next, the methodology for leak localization considering
both time-independent (steady-state) and extended period leak localization will be described. Finally, the
results obtained in the case studies will be presented and discussed.

6.2 State of the art on leak localization in WDN

In the literature, there are different works reported in the context of leak detection and localization; for
example, Pudar and Liggett (1992) formulated a solution based as an inverse problem of a steady-state
hydraulic model by minimizing the differences between measurements and simulated states. By solving
the inverse problem, the network model parameters, such as leak flow rate and location, are determined
from the sensor measurements. However, the inverse problem is generally undetermined in an operational
water network because of the small number of sensor measurements available.

To solve the indeterminate problem for leak localization when there are multiple equivalent leak can-
didates, Pudar and Liggett (1992) minimized the L2-norm of the leak parameters. Conversely, Berglund
et al. (2017) reduced the number of unknown measurements by selecting candidate nodes before solving
the optimization problem. Recently, Blocher et al. (2020) addressed the inverse problem of leak local-
ization using regularization methods to mitigate the ill-posedness effect. Using a regularization term, the
authors solve the inverse problem to estimate leak hotspots by minimizing the sum of squared residuals,
which represent the difference between measurements and steady-state model simulations. The perfor-
mance of leak localization with this method depends on the regularization parameter choice and does not
consider the uncertainty in pressures and residuals.
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Sanz and Pérez (2015) and Sanz et al. (2016) also formulated an underdetermined inverse problem for
demand calibration in order to solve the leak localization problem. To solve the ill-posed problem, Sanz
and Pérez (2015) grouped the demand nodes based on the measured pressure sensitivity to a change in
a node demand. The deviation of the calibrated demand from the expected demand for a given group
indicates the presence and approximate location of a leak (Sanz et al., 2016). Prior assumptions about
leak candidates and node groups are required, affecting the leak location search.

An alternative approach, which avoids the ill-posed inverse problem, directly compares the residuals
with the pressure sensitivities for different leak locations (Casillas et al., 2013). Although this approach
based on the sensitivities is limited to single leak scenarios, it has shown promising results in real appli-
cations (Pérez et al., 2011; Pérez et al., 2014).

The pressure sensitivity matrix, S, expresses how sensitive the pressure at each node is to a leak
occurring at any other node (even at the same node). Thus, the element si j that relates the leak flow rate
q`i at the i-th node with the pressure Pj at the j-th node is defined as ∂Pj

∂q`i
so that

S =

2

6664

s1
s2
...

sN

3

7775
=

2

6664

∂P1/∂q`1 ∂P2/∂q`1 · · · ∂PN/∂q`1
∂P1/∂q`2 ∂P2/∂q`2 · · · ∂PN/∂q`2

...
... . . . ...

∂P1/∂q`N ∂P2/∂q`N · · · ∂PN/∂q`N

3

7775
, (6.1)

where N is the number of nodes in the network and si is the vector of sensitivities to the leak at the i-th
node.1 To locate the leak, each sensitivity vector si is compared with the residual vector at each time.
The residual vector, r, is defined by

r = [P1�Pnom
1 ,P2�Pnom

2 , . . . ,PN�Pnom
N ], (6.2)

where Pnom
j indicates the nominal leak-free pressure at the j-th node, which is estimated by simulation

using a hydraulic model of the network.
In practice, it is only necessary to compute the pressure sensitivity in the nodes with sensors because

only the columns corresponding to the sensed nodes are retained. Similarly, only the residual components
of the sensed nodes are calculated. On the other hand, given the difficulty of analytically calculating the
partial derivatives in (6.1), the sensitivities are estimated numerically by increasing the leak flow rate
from 0 to a given value Q` and measuring (by simulation) the corresponding increase in node pressures:

si j =
∂Pj

∂q`i
⇡

DPj

Q`
. (6.3)

One way to use the sensitivity matrix is to binarize it by setting a sensitivity threshold so that each
sensitivity vector becomes a string of ones and zeros (Pérez et al., 2009, 2011). These binary strings
constitute leak signatures and will be compared with the residual vector for matching. The residual
vector is binarized in a similar way to the sensitivity matrix (6.1). If there is no exact match between
the binary signature of a node and the binarized residual, the node with signature that has the highest
number of bits matching the binarized residual is taken as the estimated position of the leak.

1 Some authors use the transpose of the sensitivity matrix defined in (6.1) and the residual vector as a column vector.
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Another proposal for locating leaks is through the statistical correlation of the actual residual with the
vectors of the sensitivity matrix (Pérez et al., 2014):

corr(r,si) =
(r� r)(si� si)

T

q
(r� r)(r� r)T

q
(si� si)(si� si)

T
, (6.4)

where the overline indicates the arithmetic means of the vector components. In this method, the sensi-
tivity matrix is not binarized. Equation (6.4) aims to measure the similarity between the residual vector
and the sensitivity vector of each leak node. The leak is assumed to be located at the node with sensitiv-
ity vector that has the highest correlation (closest to 1) with the residual vector. Framing it in machine
learning methods, the proposal of Pérez et al. (2014) is about a 1-NN classifier with correlation distance.

A variant of the previous method was presented by Casillas et al. (2014), where the similarity is
not measured with a correlation but through the angular closeness between the residual vector and the
sensitivity vectors. The angle between r and si is given by

ai = arccos
✓

r · si

krkksik

◆
, (6.5)

where · denotes the inner product between vectors. The authors also proposed repeatedly calculating
the angles along a time horizon (e.g., one day) to obtain an average angle. Finally, the leak estimated
position is the node whose sensitivity vector has the smallest average angle. Framing it in machine
learning methods, the proposal of Casillas et al. (2014) is about a 1-NN classifier with cosine distance.

An improvement in leak localization based on pressure residuals was presented by Casillas et al.
(2015). They propose the residual vector projection towards a space of lower dimension (called leak
signature space) in which the projections are less dependent on the leak magnitude and depend mainly
on its location. The reduction in the residual space dimensionality is achieved by forcing one component
of the residual vector to always be unitary. To locate the leak given a pressure residual, look for the
smallest Euclidean distance between the actual projected residual and the leak signatures in the new
space. Each leak signature is obtained by averaging the corresponding node’s leak signatures. In terms
of machine learning methods, the proposal of Casillas et al. (2015) is about an Euclidean 1-NN classifier
with transformed residuals as features.

The correlation (6.4) and the angle between residuals (6.5) are the basis for discussing leak localization
methods using classifiers in this chapter. Before addressing the problem of locating leaks using classi-
fiers, the metrics used to evaluate the performance of different classifiers (or classifiers with different
parameterization) will be presented.

6.3 Case studies

This section describes two water distribution networks used as case studies. The first case is a simple
Hanoi network model, a network with few nodes widely used as a benchmark to evaluate various leak
localization methods reported in the literature. Because of its small size, leak localization techniques
can be comprehensively tested on this network. The second case is a Madrid network sector, a district
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metered area (DMA), where leakage flow, node pressures, and inlet flow measurements were performed
to test leak localization algorithms in real operating environments.

The Hanoi network model is composed of one reservoir, 31 junction nodes, and 34 pipes with a total
length of 38.61 km organized in 3 loops, as shown in Fig. 6.1(a). No pumping facilities are considered
since only a single fixed-head source (node number 32) at an elevation of 100 m is available. The Hanoi
system was first presented by Fujiwara and Khang (1990) and is based on the planned trunk network of
Hanoi, Vietnam. The data sets generated by simulation for this work consider leaks at all junction nodes
with flow rates from 1 to 80 l/s, in addition to the leak-free nominal conditions.
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Fig. 6.1: The Hanoi network

Because the Hanoi network model as published by Fujiwara and Khang (1990) does not include de-
mand patterns of user consumption, a demand pattern of the Madrid DMA (described below) was used to
modulate the base demand. At each time, the demand at the consumption nodes adjusts proportionally to
the increase in the inflow, with variation throughout the day that is expressed by a multiplier coefficient.
The flow profile used for the Hanoi network is shown in Fig. 6.1(b).

Synthetic data were obtained from the Hanoi network model using EPANET (Rossman et al., 2020;
Eliades et al., 2016), which are node pressures of different leakage scenarios and at different times. The
pressure data set contains a hypermatrix P 2 R24⇥31⇥1550 that captures the time variation of the node
over the 24 hours of a day. One column is used for each node pressure, as shown in Fig. 6.2. The third
dimension (depth) is used for the different leak scenarios. Each leak scenario refers to a combination of
leak node and leak size. There are 1550 leak scenarios because 31 different leak nodes are combined
with 50 different leak sizes (from 1 to 50 l/s). The data set also includes a vector y 2 R1550 containing
the leak location for each scenario to be used in the classifier training. Additionally, the data set contains
a pressured matrix P(0) 2R24⇥31 with the information of the time variations of the node pressures under
nominal leak-free conditions. The matrix P(0) must be subtracted from each plane in P to obtain the
pressure residuals used as features in leak classification.

The data obtained from simulations with the Hanoi network model are ideal since they consider a
deterministic node demand without measurement noise. Therefore, Gaussian white noise is added to the
simulated measurements under different levels. The added noise is specified by the signal-to-noise ratio
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Fig. 6.2: Arrangement of the pressure hyper-matrix in the Hanoi data set

(SNR), which represents the size of the magnitude of the valid signal relative to the magnitude of the
measurement noise, as defined by Box (1988):

SNR dB = 20 log10(signal/noise) . (6.6)

The second case study is a DMA in the Madrid network formed by one reservoir and 312 junction
nodes connected by 14224 m of pipe with diameters between 80 mm and 350 mm. The layout of this
network is shown in Fig. 6.3, where the green square represents the reservoir, the 10 red circles represent
installed pressure sensors, and the blue star indicates the leak node used in the tests. The mean pressure
head is about 55 m, and the maximum pressure head available at the reservoir is about 58 m. Nevertheless,
it varies throughout the day and is monitored by a sensor.
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Fig. 6.3: DMA in the Madrid network

Figure 6.3(b) shows the inlet flow and supply pressure of the network monitored during three days of
operation, including a leak on the third day. The leak event is simulated by opening a fire hydrant at node
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number 272. Figure 6.3(b) shows that generally, the supply pressure decreases when the consumption in
the network increases.

The demand profile used to model user consumption on the Hanoi network was obtained from this
DMA by averaging the network inflow over 10 consecutive days.

6.4 Performance metrics in leak localization

This section describes three indicators used in this work to quantify the performance of leak localization
systems: confusion matrix, accuracy, and topological distance.

6.4.1 Confusion matrix

The confusion matrix is an instrument used in classification and pattern recognition to evaluate a classi-
fier’s ability to distinguish different classes or conditions of a system. This is why it is frequently used
in FDI (fault detection and isolation) to assess a system/algorithm’s ability to detect and isolate faults. In
a classification problem with N classes, the confusion matrix is a N⇥N square integer matrix C = [ci j],
where ci j contains the number of samples from the i-th class that are misclassified into the j-th class.

In leak localization, if each leak is associated with the closest node in the network, the rows of C
represent the “true node” where the leak occurs (the node closest to the leak), while the columns of
C represent the “predicted node” where leaks are located. Usually, it is represented by y the true leak
node and by by the predicted leak node (Fig. 6.4). Since the correct node (row) and the predicted node
(column) should match in each test, ideally the confusion matrix should be diagonal. Nonzero items off
the diagonal represent misclassifications.
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Fig. 6.4: Confusion matrix for leak localization



126 Ildeberto Santos-Ruiz, Francisco-Ronay López-Estrada, Vicenç Puig, and Guillermo Valencia-Palomo

6.4.2 Classification accuracy

Although the confusion matrix provides a comprehensive summary of the classifier’s ability to discrim-
inate between leaks at different nodes, it is sometimes more convenient to summarize the overall perfor-
mance in a single measure without detailing the separation between different leak classes. For this, the
classification accuracy can be used, which is defined as the fraction of correctly classified samples in the
classifier testing. In terms of the confusion matrix C = [ci j], the accuracy (Acc) is obtained by dividing
the sum of the elements on the main diagonal (the trace of C) by the sum of all the elements:

Acc = ÂN
i=1 cii

ÂN
i=1 ÂN

j=1 ci j
. (6.7)

A value Acc = 1 indicates a perfect classifier performance, although in practice the accuracy is only
close to 1 in the best cases. The proximity to 1, however, is only a good performance indicator when
the test data set is balanced in the number of samples for each class. In leak localization tests, where
classifiers are trained and tested on synthetic data, the simulations are programmed to equal the number
of samples for each class (leak node).

In order to optimize leak localization, the performance of localization algorithms is often expressed in
terms of classification error (classification loss), which is complementary to accuracy:

Loss = 1�Acc. (6.8)

A cross-validation strategy is also used to assess leak localization using classifiers in this work. The
cross-validation procedure consists of partitioning the training data set into K groups and iterating K
times, taking one of them as a test set and the rest as the training set. At each iteration, a classification
loss is calculated; at the end, all losses are averaged to obtain a robust measure of performance called
K-fold loss.

A limitation of the accuracy and the classification loss as performance metrics in leak localization is
that they only consider the number of errors when locating leaks but not the magnitude of these errors.
The following metric is intended to evaluate the performance of leak localization methods in a more
comprehensive way.

6.4.3 Topological distance

The topological distance between two nodes is the number of links in the shortest path connecting them.
Formally, a hydraulic network is a graph composed of a set of nodes N = {Nk} and a set of links
L = {Lk}, where each link (pipe) connects a pair of nodes. For any two nodes, i and j, the topological
distance between them is denoted by di j. If the shortest path between this pair of nodes is represented by
the link subset Pi j ⇢L , then

di j =
��Pi j

�� (6.9)

where | · | indicates cardinality.
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In Definition (6.9), all links in the shortest path are equally valued; no link is considered more signifi-
cant than another. It is also possible to define a length-weighted topological distance where the length of
the pipe in each link of the shortest path is considered:

di j = Â
Lk2Pi j

length(Lk), (6.10)

where length(Lk) is the length (m) of the k-th link. Considering all the different pairs of nodes in a
network, the topological distances are organized in a matrix. Since di j = d ji, D = [di j] is a symmetric
matrix. Furthermore, it has a null diagonal since dii = 0.

The topological distance between nodes is a metric for the leak localization error, using di j to quantify
the error when a leak at node i is located at node j. It is also used as a cost function for hyperparameter
optimization in training a classifier for leak localization. A series of data is frequently tested considering
different leak scenarios, varying the leak location and magnitude. For each entry in the data set, a pre-
dicted leak node, by, is obtained and compared against the real leak node, y. A metric that summarizes
the overall performance of the localization method on the test data is the average topological distance
(ATD)

ATD =
Âi Â j ci j di j

Âi Â j ci j
, (6.11)

where [ci j] is the confusion matrix described in Subsection 6.4.1.
Ideally, in the best case of leak localization, both ATD and classification loss should be 0, whereas the

accuracy should tend to 1.
The topological distance between a pair of nodes can be obtained, among other methods, by Bread-

First computation (Akiba et al., 2013) when all the links are treated with unit weight or by the Dijkstra
algorithm (Dijkstra, 1959) when the pipe lengths are used to weigh the links.

6.5 Classification method based on Bayesian decision

Leak localization is presented in this work as a multiclass classification problem using supervised learn-
ing. The proposed classifiers can be framed within Bayes’ decision theory and computed using proba-
bilities. In this framework, the creation and tuning consist of proper probability density functions from
training data. The Bayesian decision process is summarized below.

Let us consider a classification problem with J classes, determined by feature vectors x = [x1, . . . ,xn]
representing observations of n features. The classifier response is a class label denoted by y, so y j means
that a given data sample belongs to the j-th class. To classify an observation x, the posterior probability
P(y j |x) must be estimated, which is the probability that the given observation belongs to the class y j. It
makes sense to assign an observation to the class with the highest posterior probability. Therefore, a way
to estimate or fit these probabilities is required. Using the Bayes’ theorem, the posterior probability can
be computed as follows:

P(y j |x) =
P(y j)P(x | y j)

P(x)
, (6.12)

where
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P(x) =
J

Â
j=1

P(y j)P(x | y j) (6.13)

is a common denominator for all classes and is called evidence. The factors P(y j) and P(x | y j) in the
above equations are the prior probability and class-conditional probability of class y j, respectively. To
distinguish between the concepts of prior and posterior probabilities, the rest of this section will use P0(·)
for prior and bP(·) for posterior.

When there is no prior knowledge about the frequency of occurrence of each class, the prior probabil-
ities P0(y j) of each class can be assigned uniformly assuming that the cardinality of the classes is J and
all members are equally probable:

P0(y j) =
1

number of classes
=

1
J
, (6.14)

or it can be calculated empirically from the relative frequency of the class in the training set

P0(y j) =
number of samples in the j-th class

total number of samples
. (6.15)

Once the prior probabilities and the class-conditional probabilities have been calculated, the predicted
class is determined by the rule below.

Bayes decision rule

Given a feature vector x, assign it to class y j if

bP(y j |x)> bP(yi |x); i = 1,2, . . . ,J; i 6= j. (6.16)

This means that the predicted class, denoted by by(x), is given by

by(x) = argmax
j

bP(y j |x), (6.17)

which is also called the MAP (maximum a posteriori) decision rule.

In a diagnosis application, not all misclassifications have the same impact in the context of the prob-
lem. If some classification errors need to be weighted more than others, then the classification output can
be computed by minimizing the expected classification cost,

by(x) = argmin
i=1,...,J

J

Â
j=1

bP(y j |x)Gi j, (6.18)

where Gi j is the cost of classifying an observation as class yi when its true class is y j. The simplest way
to assign the cost of misclassification is

Gi j =

(
0 if i = j,
1 if i 6= j,

(6.19)
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where all misclassifications are penalized equally; however, sometimes it is reasonable to use penalties
other than 1. In applications for locating water leaks, where the classes are associated with the leak
positions within the network, it is reasonable to increase the misclassification cost as the distance between
the real leak position and the position predicted by the classifier.

All classification techniques used in this work can be framed within Bayes’ decision theory, although
they differ in estimating the class conditional probabilities. These techniques are naive Bayes classifica-
tion, discriminant analysis, k-nearest neighbors (k-NN), and decision trees.

Naive Bayes classification and discriminant analysis compute the likelihood using Gaussian distri-
butions. Classification by discriminant analysis assumes multivariate normal distributions for class-
conditional probability densities, so the data are modeled using a Gaussian mixture distribution. Con-
versely, naive Bayes classification assumes that each feature xi is independent of the other features, so
the joint probability P(x | y j) can be expressed from the product of the conditional probabilities of each
feature individually.

In naive Bayesian classification and discriminant analysis, the distribution parameters (mean and vari-
ance/covariance) are estimated from the training data, so they are parametric classification methods.
Furthermore, the classification by decision trees and k-NN is based on non-parametric models. The sim-
ilarities/differences and the implementation details of each of these methods can be found in Martinez
and Martinez (2015).

The Bayesian decision approach described in this section will be used both to estimate the leak location
at a specific time point (Sections 6.7 and 6.8) and also to propagate the probability of leak occurrence
between different time points (Section 6.9). The features xi are obtained from the pressures in the nodes
equipped with sensors, and the class labels y j correspond to the leaky nodes.

Before describing the leak localization using classifiers, methods based on the sensitivity matrix are
introduced since these have motivated the proposal.

6.6 Leak localization using the sensitivity matrix

Leaks in a network are manifested as pressure losses in the nodes. Therefore, the differences between
the pressures before and after a leak event, the residuals, provide information for diagnosing the event.
Leaks in the network, however, do not affect all nodes equally since the proportion in which the pressure
residual of each node varies depends on the magnitude of the residual and its location.

From now on, matrices will be used to relate the leak position with the position of the pressure sensor
where the residuals are computed. The leak node and the sensor node will be called i (row) and j (col-
umn), respectively. The matrix [si j] = ∂Pj/∂qi, as defined in (6.1), summarizes the pressure sensitivity
at the j-th node to leakage at the i-th node. The heat map in Fig. 6.5 shows the sensitivity of all node
pressures to leakage at each node in the Hanoi network using colors from white (lower sensitivity) to
black (higher sensitivity), passing through yellow and red hues. It can be seen that nodes 21, 27, 28,
29, and 12 have high sensitivities, whereas node 1 has very low sensitivity. Furthermore, each node’s
pressure is more sensitive to leaks located at the same node. Therefore, the values on the matrix diagonal
are dominant.
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The sensitivity matrix, calculated by simulation, characterizes the influence of each possible leak on
different node pressures. Thus, when a leak has already been detected, its location can be estimated
by comparing the actual pressure residuals’ similarity to the sensitivity vectors for each potential leaky
node.

In order to measure the similarity between the residual vector and the sensitivity vectors, their Eu-
clidean distance, their correlation, and the angle between them can be used. The Euclidean distance
depends greatly on the magnitude of the leak and little on its location, so its use for leak localization
requires that the residuals be mapped to a vector space where the magnitude dependence is minimized.
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Fig. 6.5: Sensitivity matrix of Hanoi network

A similarity measure (between residuals and sensitivity vectors) little affected by the leak’s magnitude
is correlated. With this measure, the predicted leak node is the one with sensitivity vector si that has the
highest correlation with the actual residual r:

by(r) = argmax
i21,2,...,n

corr(si,r). (6.20)

Since there is uncertainty in the leak node prediction, a list containing K nodes (K > 1) with the
highest correlations in (6.20) can be considered to mark a ”hotspot” of the leak in the network.

Another way to estimate the leak location is by computing the angle between the residual vector r and
each of the sensitivity vectors si. The node i with the minimum angle between si and r is assumed as a
leak node. In practice, it is not necessary to compute the angle ai between si and r but only the cosine
of this angle. The node for which the cosine is maximum is assumed as the leak node (an angle is a
minimum if its cosine is maximum):

by(r) = argmin
i21,2,...,n

ai = argmax
i21,2,...,n

cos(ai) = argmax
i21,2,...,n

r · si

krkksik
. (6.21)
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A list containing K nodes (K > 1) with the highest cosines in (6.21) are considered to mark a hotspot
for the tested leak.

Figure 6.6 shows the results of locating a leak in the Hanoi network using both methods: maximum
correlation and minimum angle. As can be seen, the maximum correlation method does not locate the
exact node of the leak but estimates a consistent hotspot. In contrast, the minimum angle method locates
the exact leak node but estimates a more dispersed hotspot. A sensitivity matrix with Dq = 25 l/s was
used. For the localization test, a leakage of 18 l/s was simulated at node 15 and noise of SNR = 60 dB
added to the pressure sensors at nodes 12, 21, and 27.
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(a) Prediction by maximum correlation (b) Prediction by minimum angle

Fig. 6.6: Leak locations obtained by maximum correlation and minimum angle in the Hanoi network

The maximum correlation and minimum angle methods have a common characteristic: they find the
training sample with the most significant similarity (the minimum correlation/cosine distance). A leak
localization method using k-NN classifiers is considered in the next section to generalize this approach
to other distance metrics.

6.7 Leak localization using k-NN with hyper-parameter optimization

The k-NN (k-Nearest Neighbors) method classifies test data by taking the most frequent class among
the k feature vectors most similar to the test data within the training set. In the simplest form of k-NN,
where k = 1, only the sample from the training set that is closest to the test sample (nearest neighbor in
feature space) is used. The test sample is then assumed to belong to the same class as the nearest training
sample. Different distance metrics can measure the similarity between two feature vectors, including the
well-known Euclidean distance.

The measure used to quantify the nearness between points significantly influences the k-NN classifier’s
performance. Although Euclidean distance is the most common way to measure dissimilarity between
data, it is also possible to use other dissimilarity measures that express other types of distance between
points in feature space. Some frequently used distance metrics are listed in Table 6.1, where x and x0 are
assumed to be feature vectors in Rn.
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Table 6.1: Distance metrics in k-NN classification

Distance name Definition

Euclidean distance d(x,x0) =
q

(x�x0)T(x�x0)

Mahalanobis distance d(x,x0) =
q

(x�x0)TS�1(x�x0)
Manhattan (city block) distance d(x,x0) = Ân

i=1|xi� x0i|
Chebyshev distance d(x,x0) = maxi |xi� x0i|
Minkowski distance d(x,x0) = (Ân

i=1|xi� x0i|p)
1/p

Correlation distance d(x,x0) = 1� corr(x,x0)
Cosine distance d(x,x0) = 1� cos(x,x0)

The Manhattan, Euclidean, and Chebyshev distances in Table 6.1 are special cases of the Minkowski
distance for values p = 1, p = 2, and p = •, respectively. The matrix S on the Mahalanobis distance is
the data covariance (De Maesschalck et al., 2000). On the other hand, corr(x,x0) is the Pearson’s linear
correlation between x and x0, treated as sequences of values, and cos(x,x0) denotes the cosine of the
angle between the x and x0 vectors in the n-dimensional feature space, as defined in (6.5). A cosine value
of 0 means that the two vectors are orthogonal and have no match. The closer the cosine value is to 1,
the smaller the angle and the greater the match between vectors.

Fine-tuning a k-NN classifier should include determining the most appropriate distance metric for the
problem and determining the number of neighbors (k) to consider. The distance metric and the number
of neighbors are known as k-NN hyperparameters.

The performance of a k-NN classifier depends on the number of nearest neighbors to use. Small values
of k tend to produce an overfitted classifier that is very sensitive to measurement noise in features. In
general, k-NN considers a higher number of neighbors, k > 1, which allows a more robust classification
(less sensitive to outliers and measurement noise).

The general idea of leak localization using classifiers is to fit a predictive model that estimates the leak
node location (class label) based on a set of node pressures (features) measurements. Next, leak location
is explored in this section using k-NN as the first classification method. Unlike the methods described
in the previous section, the k-NN classification generalizes the leaky node search by considering any
number of nodes with similar leaks and for any distance metric.

From the Hanoi network pressure data set, where leaks of different flow rates are considered in each
node of the network, k-NN classifiers were trained considering two different sets of features. In the
first set, the pressures measured at the nodes were used directly, whereas in the second set the pressure
residuals were used. For each set of features, the effect of varying the number of neighbors has been
analyzed as well as the distance metric used to measure the nearness between neighbors. The results
presented in this section were obtained assuming pressure sensors placed in nodes 12, 21, and 27. The
procedure to train and test the k-NN classifier on the Hanoi network is described in the following box.
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Training and testing k-NN on the Hanoi network

1. Build the pressure matrix P = [P12,P21,P27], containing one column for each sensor and one
row for each leak scenario. In addition, create a vector y with class labels (leak nodes) con-
taining one element for each row of P. The matrix R = P�P0 must also be computed when
pressure residuals are used as features.

2. Divide the data (P, R and y) into two groups; one for training and the other for testing. For train-
ing, the samples corresponding to leakage flow q` = 2,4, . . . ,50 l/s are used, whereas for testing
the samples corresponding to leakage flow q`= 1,3, . . . ,49 l/s are used. In cross-validation tests,
the entire data set is taken for training, and testing is performed on the validation subset in each
iteration.

3. Train the k-NN classifier using Ptrain or Rtrain, depending on the set of features to be used. A
distance metric and a number of neighbors must be specified.

4. Test the trained classifier using the testing data Ptest or Rtest. Predicted leak nodes are stored in
a vector by to later evaluate the classifier performance.

5. Compute the classification loss (error) and the confusion matrix.

In order to find the best hyperparameters (the best combination of distance and number of neighbors)
of the k-NN classifier, the classification error, as defined in (6.8), was calculated for each combination of
distance and number of neighbors from k = 1 to k = 50. For each combination, a 5-fold cross-validation
was applied so that the K-fold loss is used as an error metric. The K-fold loss is obtained by averaging the
losses obtained on each fold. The K-fold loss for each combination of distance and number of neighbors
is shown in Fig. 6.7. The definition of each distance metric was presented in Section 6.5.
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Fig. 6.7: Hyperparameter optimization in k-NN classifier for leak localization
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Figure 6.7 shows that the best performance (the lowest classification error) is obtained using the co-
sine distance, followed by the correlation distance. Regarding the number of neighbors, the slightest
classification error is obtained for 4 and 5 neighbors (k = 4 was selected for simplicity). Because the
variation in the classification error for a different number of neighbors is barely perceptible in Fig. 6.7
for the cosine distance, this variation has been plotted separately in Fig. 6.8. This figure shows that as
the number of neighbors approaches 50, the classification error increases because the data set used only
contains 50 samples for each leak class.
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Fig. 6.8: Leak localization error using k-NN for different number of neighbors

Performance tests were applied to the k-NN classifier considering Gaussian noise in the measured
pressures. The lowest classification error, obtained in noise-free conditions (SNR = •), was 0.4916
when using pressures as features, whereas it was 0.0039 when using residuals. The results plotted in
Fig. 6.9 show that around 60 decibels a cut-off point is detected in the error curve where the effect of
noise increases considerably. k-NN is inferior when using the measured pressures as features since almost
half of the samples are wrongly classified even without noise. The use of pressure residuals (orange line)
instead of raw pressures (blue line) significantly reduces leak classification error. The confusion matrices
in Fig. 6.10 show an improvement in leak localization when pressure residuals are used instead of raw
pressures.

From the results obtained in this section, it can be concluded that pressure residuals are an excellent
option as features to classify leaks by their location. Furthermore, it was found that the best way to
measure the similarity between residual pressure samples is by utilizing the cosine distance. It is also
important to emphasize that when locating leaks using k-NN several neighbors greater than one must be
considered according to the pressure measurements amount of noise.

6.8 Feature transformation in classifier-based leak localization

The previous section shown that the cosine distance, determined by the angle between residuals, is a good
measure of similarity to classify leaks. This means that the leaks present a characteristic directionality (in
the residuals space) according to the node where they occur. This section proposes a transformation on
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Fig. 6.9: Dependence of the classification error on the signal-to-noise ratio for k-NN with 4 nearest
neighbors

the residuals to extract the information about their direction in a set of descriptors used as new features
for the classifier. As shown at the end of the section, this transformation extends the concept of cosine
distance used in any classifier, not just the k-NN.

According to the literature review, leak localization methods formulated as multiclass classification
problems use pressure values or pressure residuals as features under a machine learning approach. An
exploratory analysis of the residuals suggests that leaks at the same node tend to show a characteristic
direction; see Fig. 6.11. This is a fundamental hypothesis in model-based leak localization methods based
on sensitivity matrices (Pérez et al., 2011). Although in Fig. 6.11 it appears that the residuals of all the
leaks at a specific node follow a constant direction, the direction of the residual vector can vary if an
extensive range of leakage magnitudes is considered.

Traditional classifiers for leak localization use residual vectors in the Cartesian form where the resid-
ual magnitude and direction are implicitly combined. This does not facilitate the classification of leaks
since the residual vector magnitude does not provide information on its direction. Therefore, to improve
classifiers’ performance for leak localization, it is proposed to map the features into a new subspace
capturing only the information on the direction of the leaks and discarding the information on their
magnitude.

According to vector analysis, vectors can also be expressed in a form where information about mag-
nitude and direction is decoupled (Young, 2017). Thus, for any residual vector r = [r1,r2, . . . ,rS], the
decoupled expression is

r = M [cosq1,cosq2, . . . ,cosqs] = M [c1,c2, . . . ,cS] , (6.22)

where M is a scalar, and

ck = fk(r1,r2, . . . ,rS) =
rkq

r2
1 + r2

2 + · · ·+ r2
S

, for k = 1,2, . . . ,S (6.23)
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(a) Features: Pressures
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(b) Features: Pressure residuals

Fig. 6.10: Confusion matrices for k-NN leak localization from noisy pressures with an SNR of 60 dB
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Fig. 6.11: Leaks at different nodes plotted on the residual subspace. A single color is used for each leak
node, although some colors are repeated.

are the so-called direction cosines that uniquely describe the direction of the residual vector r in the
S-dimensional subspace. The vector c = [c1,c2, . . . ,cS] can be used as a new feature vector instead of the
residual vector r.

The training procedure and the predictive use of classifiers to locate leaks have been previously de-
scribed by Ferrandez-Gamot et al. (2015). The modification proposed consists of using a new set of
features. As shown later, replacing the original features rk with the new features ck improves classifiers’
performance for leak localization, increasing class separability. In the diagram in Fig. 6.12, the gray box
shows where the feature transformation is applied to improve the classifier’s performance in the leak
localization process.

Nonlinear mapping

ck =
rk!

r 2
1
+ r 2

2
+ · · ·+ r 2

S

c1

c2

cS

r1

r2

rS

...
...

Multiclass

classifier

"y
Leak

node

Residuals CosinesPressures

rk = Pk − P
(0)

kP1, P2, . . . , PS

P
(0)
1

, P
(0)
2

, . . . , P
(0)
S

Fig. 6.12: Feature transformation to improve the classifier performance for leak localization

The proposed feature transformation can be seen as an ad hoc transformation because the original fea-
tures are projected into another vector space through a nonlinear transformation. This proposal, however,
does not increase the space dimension as it usually happens when the “kernel trick” (Koutroumbas and
Theodoridis, 2008) is applied.

The use of direction cosines as classifiers is also related to the use of the cosine distance in k-NN.
However, in k-NN, the angular proximity is measured between pairs of samples. In contrast, the di-
rection cosines can be computed for individual samples without an additional reference sample since
[c1,c2, . . . ,cS] measures the angular closeness of that sample concerning the implicit coordinate axes.

A series of tests verified the improvement in leak localization by using direction cosines instead of
unprocessed residuals. In order to quantify the improvement obtained, the following percentage improve-
ment was used
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I% := 100
Lres�Lcos

Lres
, (6.24)

where Lres is the classification loss (i.e., the leak localization error) obtained using residual features, and
Lcos is the classification loss when using cosine features. In leak localization tests in the Hanoi network,
using the data set described in Section 6.3 (sensors at nodes 12, 21, and 27), the classification loss
using k-NN decreased by 99.3% when cosines were used, relative to when residuals are used directly as
features. Using the naive Bayes, decision tree, and linear discriminant classifiers, the classification loss
was reduced by 99.7%, 99.6%, and 97.0%, respectively, using the percentage improvement (6.24).

The lower classification loss obtained when cosines are used as features leads to better class separabil-
ity. Therefore, with the four classifiers tested, the cosines better captured the directionality of the leaks in
the residual subspace. This is shown in Fig. 6.13, where it is found that the class regions (where the class
is detected) for three leak classes in the Hanoi network using cosine features were better defined than
those for untransformed residual features. As shown in Fig. 6.13, using cosine features, the leak local-
ization problem becomes almost independent of the classifier used since the class regions are similar for
different classifiers. In fact, with cosine features, the classification loss (and consequently the accuracy)
differs by less than 1% in the classifiers tested.

In order to analyze the robustness of the classifiers fed by cosine features, leak localization tests
were performed considering measurement noise in node pressures. The results in Table 6.2 show that
the percentage improvement when using the cosine features concerning the residual features is more
significant than 50% for a wide noise margin. The percentage improvement decreases as the noise ratio in
the signal increases because when the noise is considerably high (SNR < 40 decibel), the fake direction
captured by the cosines become irrelevant to locate the leak. In the worst case, however, the improvement
percentages remain close to 0, which means that cosine features are not decreasing in performance.

Table 6.2: Percentage improvement in performance of classifiers using cosine features

Classification method SNR
•† 80 dB 60 dB 40 dB 20 dB 0 dB‡

k-Nearest Neighbors 0.993 0.873 0.394 0.006 0.013 0.005
Naive Bayes 0.997 0.939 0.405 0.009 -0.003 0.003
Decision Tree 0.996 0.917 0.473 0.021 -0.018 -0.007
Linear Discriminant Analysis 0.970 0.929 0.550 0.016 -0.040 -0.018

† Noise-free measurements
‡ Noise and signal have the same magnitude

To assess the overall performance of cosine-based classifiers in leak localization, the average topo-
logical distance (ATD) was calculated, as defined in (6.11). The results are presented on the left side of
Table 6.3 for noise-free measurements, confirming the best performance when using the cosine features.
By using noisy measurements, the ATD increases as the table on the right side of Table 6.3 shows, but
its variation is consistent with the increase in the classification error.



6 Leak localization in water distribution networks using machine learning based on cosine features 139

(a) Naive Bayes with residual features (b) Naive Bayes with cosine features

(c) LDA with residual features (d) LDA with cosine features

(e) Euclidean k-NN with residual features (f) Euclidean k-NN with cosine features

(g) Decision tree with residual features (h) Decision tree with cosine features

Fig. 6.13: Comparison of decision boundaries for different classifiers with residual and cosine features
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Table 6.3: Average topological distance using different feature sets

Noise-free measurements Noisy measurements, SNR = 60 dB

Classification method Features
Residuals Cosines

k-Nearest Neighbors† 0.6555 0.0026
Naive Bayes 2.4090 0.0026
Decision Tree 1.3239 0.0026
Linear Discriminant Analysis 2.1974 0.0232

† Euclidean distance, k = 5

Classification method Features
Residuals Cosines

k-Nearest Neighbors† 0.9523 0.5948
Naı̈ve Bayes 2.4387 0.9742
Decision Tree 1.3935 0.7303
Linear Discriminant Analysis 2.2090 0.7432

† Euclidean distance, k = 5

The quadratic discriminant analysis (QDA) classifier (not included in previous tables) deserves a sep-
arate mention in the comparative analysis of classifiers. Among the classifiers tested, this is the only one
that produces good results in locating leaks using pressures without computing residuals. When residu-
als or cosines derived from them, however, are not used, this classifier is more sensitive to the operating
point (user consumption, time of day). Therefore, its use in leak localization may require several classi-
fiers fitted with different training sets as the operating point changes. This implies a bank of classifiers,
a classifier for each hour of the day or each user consumption range.

Figure 6.14 shows the error in leak localization obtained with this classifier for different signal-to-
noise ratios in the measured pressures, considering a specific time of day. This classifier’s characteristic
is that it showed better performance when trained from pressure measurements with added noise; see
right side of Fig. 6.14. This can be explained because when the QDA classifier is trained with clean data,
the class probability densities are fitted to a tiny region.
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(a) Trained with noise-free data (b) Trained with noisy data

Fig. 6.14: Classification loss in QDA-based leak localization



6 Leak localization in water distribution networks using machine learning based on cosine features 141

6.9 Leak localization over a time interval

Since a leak is not immediately located when it appears, a time interval T with measurements from
pressure sensors is available. In this case, the features and responses are available as a time series. A
refined output at a specific sample time t can be obtained, considering the class predicted during the
previous interval [t�T, . . . , t�1, t]. One way to refine the output is to train different classifiers for each
hour of the day and predict the leak node using the one corresponding to the time of measurements. The
final output (the most likely leak node) is then calculated by majority vote:

yt(x) = mode(byt(x)), t = t�T, . . . , t�1, t, (6.25)

where mode(·) indicates the highest frequency class. In this way, the most predicted leak node is selected
over the available time interval.

Figure 6.15 shows the result of an LDA leak localization test on the Hanoi network over a full day
in 1-hour increments (t = 1,2, . . . ,24). The true leak node is number 8, and the output obtained by
majority vote is number 9, although, at different times of the day the predicted node varies within the set
{5,7,8,9,10}.
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(a) Predicted node over time (b) Class frequencies

Fig. 6.15: Leak node prediction by majority vote over time

Another strategy to refine the output is, by considering the Bayesian inference described in Section 6.5,
to take the posterior class probabilities at each sample time as prior probabilities for the next sample
time. In this way, the prior and posterior probabilities are updated at each time step (with each new
measurement) as

bPt(y j |x) =
bPt�1(y j |x)P(x | y j)

P(x)
, (6.26)

except at the initial time since there is still no posterior probability calculated. Therefore, the first prior
probability is assigned as indicated in equations (6.14) and (6.15).

Figure 6.16 shows the results of the LDA leak localization test with the same test data as in Fig. 6.15
but by applying Bayesian inference over time. It can be noted that with this method the predicted node
converges to the correct leak node and shows greater consistency (less variability) than the simple ma-
jority vote.
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Fig. 6.16: Leak node prediction by Bayesian inference over time

It may be necessary to limit the probabilities to an interval [0,1�e], where e is a small number during
the probability propagation over time. This prevents, when an estimated posterior probability is 1 at some
sample time t0, that the remaining probabilities are always 0 for subsequent time steps t > t0.

6.10 Integrated leak localization method

The integrated procedure to locate leaks in water distribution networks, considering what has been de-
scribed in previous sections, is shown in the following box. The workflow is the same for different
classification methods and different feature sets.

Leak localization using classifiers

1. (Data collection) Using the network’s hydraulic model, simulate different leakage scenarios,
considering different leak flow rates and different leaky nodes. A nominal leak-free scenario
should be simulated. EPANET software can be used in this step.
From the simulation results, construct a pressure matrix, P, containing the node pressures ar-
ranged by columns so that each row of this matrix represents a different leakage scenario. A
matrix P(0) (same size as P) must also be constructed containing the leak-free node pressures.
Additionally, a vector y must be constructed, which has a length equal to the number of rows in
P. This vector contains the class labels for the classifiers: the element yi is an integer indicating
the leak node for the leak scenario represented in the i-th row of P.

2. (Sensor placement) From the pressure matrix P, calculate an optimal sensor placement us-
ing the techniques proposed in Morales-González et al. (2021) and Santos-Ruiz et al. (2022).
The number of sensors can be determined from a marginal analysis by progressively increasing
the number of sensors until new sensors do not significantly improve leak localization perfor-
mance. Some sensors less than the marginal number can be assigned depending on the available
equipment.

3. (Data partitioning) In matrices P and P(0), eliminate the columns that do not correspond to
sensor nodes, keeping only the columns associated with the sensor placement calculated in the
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previous step. Subsequently, separate the rows of P into two subsets: one for training and one
for testing, creating the sub-matrices Ptrain and Ptest. The same division is performed on P(0).
Similarly, y is divided to obtain ytrain and ytest.

4. (Feature computation) Set the features for training Xtrain = Ptrain or Xtrain = Ptrain�P(0)
train or

Xtrain = f
�
Ptrain�P(0)

train
�
, where f (·) is the cosine extractor function defined in (6.23). Similarly,

set the features for testing: Xtest = Ptest or Xtest = Ptest�P(0)
test or Xtest = f

�
Ptest�P(0)

test
�
.

5. (Classifier training) Train the selected classifier using the training data labeled {Xtrain,ytrain}.
6. (Classifier testing) Test the classifier using the labeled test data {Xtest,ytest}. Store in a vector

by the leak nodes predicted for Xtest. Then, evaluate the performance of the classifier from ytest
and by by using the metrics described in Section 6.4.
Steps 3 through 6 can be repeated in a cross-validation scheme. In that case, the K-fold loss is
used as a performance measure.

7. (On-line prediction) Obtain new pressure measurements at the sensor nodes and compute the
features in the same way as step 4. Use the classifier trained in step 5 to predict the leak’s loca-
tion. If multiple measurements are available and covering a time interval where the network’s
operating point changes considerably, use one of the proposals from Section 6.9 (majority vote
or Bayesian inference) for the final estimate of the leak node.

The presented leak localization scheme was tested to evaluate the performance of different combi-
nations of classifier and feature set. Table 6.4 summarizes the comparison of the performance of the
different classifiers tested in the Hanoi network. In the tests, sensors were placed in three nodes (12,
21 and 27), and three different sets of features were considered: pressures, residuals and cosines. The
results highlight the general improvement introduced by using cosine features instead of residuals. In
addition, it is noted that k-NN with Euclidean distance and cosine features is equivalent to k-NN with
cosine distance and residual features. It is also highlighted that QDA generally shows better performance
than the other classifiers, except when cosine features are used, because in that case the performance of
all the classifiers is quite close.

Table 6.4: Leak classification error for different classifiers on different feature sets. Error metric: 5-fold
loss (cross-validation)

Classification Method Features

Pressures Residuals Cosines

Naive Bayes 0.82968 0.81935 0.00645
Linear Discriminant Analysis 0.75161 0.76129 0.02000
Quadratic Discriminant Analysis 0.00645 0.00516 0.00839
Euclidean k-NN 0.48710 0.49548 0.00387
Cosine k-NN 0.67355 0.00387 0.00323
Decision Tree 0.70903 0.71161 0.00387
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Using the work flow in the box above, leak localization tests were also performed in some sectors
of the Madrid network (the DMA described in Section 6.3 and other medium-sized sectors) by using
field measurements. An exhaustive analysis is not presented in these cases because the samples collected
correspond only to a single leak point. Opening valves physically simulated the leaks. In each case,
measurements were collected from 10 sensors placed in specific nodes determined by metaheuristic
optimization, such as those described in Morales-González et al. (2021) and Santos-Ruiz et al. (2022).
Nominal leak-free node pressures were obtained by simulation with an EPANET model tuned from
measurements two days before the leak event. Figure 6.17 shows the result of the leak localization test in
the DMA of the Madrid network. In this figure, the true leak node is represented by the cyan star (?) and
the predicted leak node by the orange star (?). The topological distance between the true and predicted
nodes (node number 272 and 138, respectively) is 5, corresponding to about 8 m of pipe length. The best
leak node prediction (shown in Fig. 6.17) was obtained with k-NN using correlation distance. With k-NN
using cosine distance and with other classifiers using cosine features, localization errors of about 100 m
were obtained. This may be because the directionality associated with the directing cosines is sensitive
both to noise in pressure measurements and to the accuracy of nominal pressure estimates obtained from
the model. Therefore, poor leak-free pressure estimates can lead to fake directions associated with nodes
distant from the leak node when the model is not well calibrated. In contrast, the correlation distance
appears less sensitive to model calibration and measurement bias.
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(a) Topological view (b) Close-up street view

Fig. 6.17: Leak localization in a DMA of the Madrid network using k-NN with correlation distance

In leak localization tests with synthetic data (simulations) in different sectors of the Madrid network,
the same behavior was observed: the classifiers showed a considerably higher performance using cosine
features than when they used raw residual features. In tests with physical measurements (not simula-
tions), however, the difference was not always significant, and sometimes the k-NN with correlation
distance produced better results.
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6.11 Conclusions

This work has addressed a leak localization method using classifiers with transformed pressure residuals
as features. The residuals’ proposed transformation consists of a nonlinear mapping to extract the infor-
mation about their directions, separating it from their magnitudes. The transformed features, called di-
rection cosines, significantly improve leak localization accuracy compared with untransformed residuals,
even under noisy pressure measurements. It should be noted that in predictions from real measurements
in physical networks, a well-calibrated hydraulic model must be available to estimate the leak-free nom-
inal pressures. The cosine distance and the directionality on which the cosine features are based strongly
depend on the accuracy of those estimates. In contrast, the correlation distance seems less sensitive to
model calibration and measurement bias, so using k-NN with correlation distance should be considered
when the hydraulic model is not very accurate.

Two machine learning classification techniques were not explored in depth for leak localization and are
not reported in this work: support vector machines (SVMs) and artificial neural networks (ANNs). SVMs
are binary classifiers that cannot directly address the problem of classifying multiple leak classes, so their
application involves using “one versus rest” or “one versus one” schemes, leading to a more complex
leak localization in networks with many nodes. Furthermore, SVMs are linear classifiers, so they must
be combined with kernel techniques to classify nonlinear decision boundaries. On the other hand, neural
networks are a fairly broad field with an application that usually requires deep learning techniques not
addressed in this work. In preliminary tests with SVMs and ANNs, no better performances were achieved
than those reported with the other methods, but their exploration remains open for future work.
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Casillas, M. V., Garza-Castañón, L. E., and Puig, V. (2013). Extended-horizon analysis of pressure
sensitivities for leak detection in water distribution networks: Application to the Barcelona network.
In 2013 European Control Conference (ECC), pages 401–409.
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Chapter 7

LabVIEW-Based SCADA System for Sequential Leaks’ Diagnosis in
Pipelines

Rolando Carrera1 and Cristina Verde1

Most of the leak diagnosis contributions have only been tested off-line by the academic community,
and there are few studies on the implementation of algorithms as an integral part of a SCADA (Su-
pervisory Control And Data Acquisition) system with diagnostic capability. This paper aims to fill the
lack of valuable knowledge from a practical point of view about the implementation of diagnosis sys-
tems. Specifically, we discuss one that introduces the design of LabVIEW software implemented on a
CompactRIO controller, tasked with localizing sequential leaks according to an algorithm previously
developed at the Instituto de Ingenierı́a, UNAM. This program was designed as part of the SCADA sys-
tem for a hydraulic pilot plant. Some recommendations and remarks are addressed based on the authors’
experience.

7.1 Introduction

Fault detection and identification (FDI) is a relative new research area in the automatic control commu-
nity. FDI solutions have been developed almost for every engineering field. One field of interest is faults
in pipelines because they may cause heavy financial losses or worst: environment damages or human
casualties (Fang et al., 2019). Thus, for this purpose different pipeline leakage detection methods have
been performed. For instance: exterior methods that are based on sensors that detect the presence of the
conducted material in the environment along the pipeline; interior or computational methods based on
dynamic behavior of the fluid and; visual or biological methods based on human or artificial vision or
acute smell capacity of dogs (Fang et al., 2019).

Diverse technologies for leak diagnosis through software have been developed based on the model of
the dynamics of a liquid element in a pipe, starting with the works of Billman and Isermann (1987) by
assuming only available data of pressure and flow rate at the ends of the pipeline. Recently, the state
of the art of the leak diagnosis methods has been published in Moubayed et al. (2021), Zhang et al.
(2015) and Liu et al. (2019). The detectors by software use data driven models such as neural networks,
analytical models derived from the dynamic model, and also combinations of both models. Thus, one can
find simple static relationships easy to implement (Carrera and Verde, 2001) up to complex observers for
hyperbolic equations by boundary injection (Aamo, O. M and Salvesen, J and Foss, 2006).

1Instituto de Ingenierı́a, UNAM, Mexico, e-mail: rcarrera@unam.mx and verdeunam.mx
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In contrast to the diverse options that isolate a single leak, few methods have been validated by consid-
ering a multiple leak scenario. This fact could be motivated by the remark about the weak detectability
of two simultaneous leaks published in Verde et al. (2003) and the practical condition of avoiding perma-
nent manoeuvers in a line for inflammable fluids. These issues imply that some leaks cannot be isolated,
once the transient response produced by the leak has disappeared. On the other hand, when the useful
lifetime of a pipeline is exceeded, sequential leaks could occur. This fact motivated the search for possi-
ble solutions for the multiple sequential leaks (MSL) problem in which the time interval required by the
application to isolate the leaks determines how close in time the leaks can appear.

One research line in the Coordinación de Eléctrica y Computación at the Instituto de Ingenierı́a,
UNAM, is fault detection and identification of complex systems, specifically early fault detection in
pipelines with this goal in mind, a pipeline prototype (Carrera, 2019) was built in the Hydromechanics
Laboratory, as seen in Fig. 7.1. Data from experiments can be downloaded in order to perform FDI off
line. More importantly, however, with this facility one can test FDI methods in real-time.

Fig. 7.1: Partial view of the facility. Pipeline in blue to the right and hydraulic pumps, instruments and
water reservoir to the left

The prototype is instrumented with flow rate and pressure sensors and is also complemented with a
data acquisition system and a personal computer for software issues. This prototype has been used to test
several fault detection methods throughout its existence (the first prototype was built in 1999), currently
we are testing wave pressure and multiple leaks detection methods. The last method is the focus of this
chapter.
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In this chapter we present a new supervisory control and data acquisition (SCADA) system called
SCADA-II (Instituto de Ingenierı́a). The goal of this system is to apply in real-time a multiple sequential
leaks method in our prototype. In the following sections, the whole process of achieving this goal is
explained.

7.2 Experimental Prototype Description

The prototype is a pipe without lateral branches with coil geometry, with pressure and flow sensors at
the ends, and several valves and servo valves for emulation of leaks along the pipe. Pressure sensors can
be attached at the ends of each level of the coil. Therefore, this prototype is suitable for the application
of the method described in Section 7.3.

7.2.1 Prototype configuration

The fault detection prototype was built with a 7.62 mm diameter iron pipe. Table 7.1 shows its physical
parameters, and the layout of the pipe is shown in Fig. 7.2. The main parts of the prototype are the
following: a) 10 m3 water reservoir; b) two hydraulic pumps of 7.5 and 10 HP, which can be combined
or used alone; c) Coil shape pipe on a vertical plane that ends in the drinking water reservoir; d) ball
intake valves for flow regulation; e) pressure and flow measure points; and f) valves for leaks emulation.
The downstream pressure transducer is located 4.5 m from the end of the pipe, which is open to the
atmospheric pressure. The prototype is monitored and regulated by a personal computer (PC) attached
to a data acquisition system, which monitors the variables of flow rate and pressure, actuates the servo
valves and modifies the hydraulic pump velocity. The personal computer, the data acquisition system and
the program in the PC compose a SCADA system.

Table 7.1: Pilot pipeline parameters

Parameters Values Description
D 0.076m Inner diameter
L 163.715m Length
g 9.81m/s2 Gravity acceleration
a 1330m/s Pressure wave velocity
n 10�6 [m2/s] at 20o C Fluid kinematic viscosity
e 0.2 mm Rugosity

Material Schedule 40 galvanized iron

The mathematical model that describes the flow behavior in a pipe was developed from the analysis of
a straight pipe. Because of space limitations, however, the prototype is an array of pipes in a coil shape
on a vertical plane. This array is not a drawback since from this array one can have an equivalent in the
shape of a straight horizontal pipe by using the height relative to a reference level (Section 7.2.2).
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Fig. 7.2: Schematic of the prototype: a) water reservoir, b) hydraulic pumps, c) pipe, d) input and output
valves, e) flow and pressure sensors, f) leak valves, g) beginning of the pipe and h) end point

The part of the pipe useful for fault detection is the coil between measurement instruments. These two
points, (g) and (h) (see Fig. 7.2), are the marks of the beginning and ending of the monitored pipe. There
are also six points where leaks can be created; these points are composed of 2.54 cm diameter iron pipes
welded to the main pipe and ball valves that regulate the leak flow (valves V1 to V6, Fig. 7.2). Two of
these valves are servo valves (V1 and V3) that are manipulated in the SCADA-II in order to synchronize
time and set the size of the leak.

7.2.2 Topographic profile and pressure modification

The prototype has the layout shown in Fig. 7.2. As the area and conduit material are constant along the
pipe, then the pressure head (Bansal, 2005) is

H̃(z) =
P(z)
rg

, (7.1)

where P(z) is the manometric pressure at point z, r is the fluid density and g the gravity constant.
Furthermore, (7.1) can be written in terms of piezometric head H(z) = H̃(z)+h(z) where h(z) is the
pipe height over any level reference, and z is the spatial coordinate along the pipe.

To handle this pilot plant as it were a horizontal plane conduit, the whole length L is calculated by
adding the length of the straight and u-shape sections, and by taking the pressure as the water column
height that is achieved by transforming the pressure head H̃(z) according to the reference level height
h(z) with h(0) = 0 m, at the inlet pipe (Sieber and Isermann, 1977). The last assumption is the same as
adding gravity pressure (caused by the height difference to the reference level) to the pressure head at
any point z of the line. Experimental studies have shown that for the specific parameters of the pilot plant
the model error produced by the above assumptions is neglected (Carrera and Verde, 2001).
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7.2.3 Sensors and equipment

In this subsection, the main features of the sensors are described, as well as the equipment used in the
facility: hydraulic pumps, electronic power inverters that drive the pumps, servo valves, data acquisition
system (DAQ) and personal computer (PC).

Flow sensors: Promass 83F from Endress + Hauser (E+H, 2018b), sensor based on the Coriolis effect,
±0.05% maximum error

Pressure sensors: Cerabar PMO71 from Endress + Hauser (E+H, 2018a), piezoresistive sensor,
±0.05% maximum error

Inverters: Frequency variators F800 and E740 from Mitsubishi (Mitsubishi, 2018)
Centrifugal pumps: Siemens 10 HP and 7.5 HP (Barmesa, 2018)
Data interface: compactRIO (NI, 2018) with A/D and D/A converters
Servo valves: Georg Fischer type 133 (GF, 2018), and Remote Control RCE 15, (RC, 2018)
Personal computer: Panasonic Toughbook CF-53 (Panasonic, 2013), 64-bit processor, 2.5 GHz clock,

446 GB HD and 4 GB RAM

All sensors, servo valves and inverters are connected to the data interface by means of 4-20 mA current
loops. The PC communicates with the data interface via an USB connector. More details are given in
Subsection 7.4.2.

7.3 Diagnosis Model for Two Sequential Leaks

The transient flow model in pressurized pipes is based on the conservation laws of momentum and mass
that govern transient flows. The partial differential equations:

1
a1

∂Q(z, t)
∂ t

+
∂H(z, t)

∂ z
+ J(Q(z, t),q1) = 0,

∂H(z, t)
∂ t

+a2
∂Q(z, t)

∂ z
= 0

(7.2)

describe a fluid in a one dimensional straight line of one-dimension in the absence of leaks and are taken
from Chaudhry (2014), where H(z, t) and Q(z, t), respectively, denote the piezometric pressure head and
the flow rate at the center of the pipe for a pipe of length L. Furthermore, z 2 [0,L] is the spatial variable,
and t � 0 is the time variable. The parameters are a2 = a2/a1 with a the pressure wave speed, a1 = gAr
with Ar the constant cross-sectional area and g is the gravitational acceleration. The hydraulic gradient
function per unit length, J(Q(z, t),q1) = q1Q2, depends on specific friction approximations, and here a
quadratic function is used, where q1 is the parameter associated with the pressure gradient. Model (7.2) is
developed by assuming elastic pipes and weakly compressible fluids with a flow rate significantly lower
than the pressure wave speed. This model is the base of diverse leak diagnosis methods by using mass
balance and the hydraulic gradient of the fluid. One can consult the reference Verde and Torres (2017),
where diverse methods are introduced.

A leak at point Le on the pipe is characterized by:
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Q(Le� e, t) =Q(Le + e, t)+µ(t� t)Qe(t),
H(Le� e, t)⇡H(Le + e, t)

(7.3)

with e an infinitesimal value close to 0, and the time t defines the initialization of the leak with µ as the
step function. The outflow rate induced by the piezometric head at Le is given by:

Qe(t) = le
p

He(Le, t), (7.4)

where the leak coefficient le depends on the discharge coefficient, the leak cross section area sa and the
gravitational acceleration g. Thus, the leak conditions (7.3) and (7.4) must be considered at each point
where a leak is present in the pipeline.

To evaluate the SCADA-II system, which is the subject of this chapter, a MSL (Multiple Sequential
Leaks) method developed at the Instituto de Ingenierı́a has been integrated to the data acquisition system.
From an implementation point of view, the main advantages of the method are

• the high velocity of the location of the leak since the dimension of the estimation algorithms is of
minimum order and independent of the number of leaks.

• the continuous identification of the gradient parameter simultaneously with the leaks estimation during
the monitoring task.

The reader interested in the detail of the algorithm derivation can consult Rojas (2021). Here, only
the main details are given. A key result to simplify the MSL problem is the set of equations obtained
from Eqs. 7.2, 7.3 and 7.4, which characterizes the models equivalence, in steady state, when there
are two leaks and one leak, with the friction as a function of the flow rate by sections (Verde and Rojas,
2017). Figure 7.3 describes variables and parameters of the pipelines used to characterize the equivalence
relationships between one and two leaks using an input-output model.

Q(0) H(L) Q(L)H(0) H(Le)

Le

L1 L2

L

Qfe

Q(0) H(L) Q(L)H(0) H(L1) H(L1+L2)

Qf1 Qf2

Fig. 7.3: Variables description of the equivalent models in steady state for the pipeline with one leak in
ze = Le and with two leaks (z1 = L1 and z2 = L1 +L2)

Fact 1: Let the two leaks scenarios be in steady state as shown in Fig. 7.3 where both pipelines have
the same physical characteristics (length, diameter, fluid and roughness). Assume that the outflow Qe is
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Table 7.2: Fluid Models by Sections with one and two Leaks

Leak Le Leaks L1 y L2

Upstream Section
z1e 2 [0,Le] z1 2 [0,L1]

1
a1

∂Q(z1e,t)
∂ t + ∂H(z1e,t)

∂ z1e
+ J

�
Q(z1e(t),q1)

�
= 0 1

a1

∂Q(z1,t)
∂ t + ∂H(z1,t)

∂ z1
+ J

�
Q(z1, t),q1)

�
= 0

∂H(z1e,t)
∂ t +a2

∂Q(z1e,t)
∂ z1e

= 0 ∂H(z1,t)
∂ t +a2

∂Q0(z1,t)
∂ z1

= 0

Boundary Condition Boundary Condition

H(0, t) H(0, t)
Q(Le� e, t) = Q(Le + e, t)+Qe(t) Q(L1� e, t) = Q(L1 + e, t)+Q1(t)

H(Le� e, t) = HL(Le + e, t) H(L1� e, t) = H(L1 + e, t)

Middle Section
- z2 2 [L1,L1 +L2]

- 1
a1

∂Q(z2,t)
∂ t + ∂H(z2,t)

∂ z2
+ J

�
Q(z2, t),q1)

�
= 0

- ∂H(z2,t)
∂ t +a2

∂Q(z2,t)
∂ z2

= 0

- Boundary Condition

- Q(L1 +L2� e, t) = Q(L1 +L2 + e, t)+Q2(t)
- H(L1 +L2� e, t) = H(L1 +L2 + e, t)

Down Stream Section
z2e 2 [Le,L] z3 2 [L1 +L2,L]

1
a1

∂Q(z2e,t)
∂ t + ∂H(z2e,t)

∂ z2e
+ J

�
Q(z2e, t),q1)

�
= 0 1

a1

∂Q(z3,t)
∂ t + ∂H(z3,t)

∂ z3
+ J

�
Q(z3, t),q1)

�
= 0

∂H(z2e,t)
∂ t +a2

∂Q(z2e,t)
∂ z2e

= 0 ∂H(z3,t)
∂ t +a2

∂Q(z3,t)
∂ z3

= 0

Boundary Condition Boundary Condition
H(L, t) H(L, t)

related to the outflow rates of line 2 by
Qe = Q f 1 +Q f 2 (7.5)

with Q f 1 and Q f 2 as the outflows of pipeline 2, respectively. Thus, the differences between both lines
are described next:

Pipeline 1. A leak with flow rate Qe at Le in line 1, and
Pipeline 2. Two leaks with flow rates Q f 1 and Q f 2 at coordinates L1 y L1 +L2, respectively

Considering the segments between leaks of Fig. 7.3, each fluid can be described by equations of the form
(7.2) and its respective boundary conditions. Thus, the models shown in Table 7.2 were obtained for each
section.
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If both flows are in equilibrium conditions, from the models of Table 7.2, the relation between the
leaks positions and the hydraulic gradients of the three sections is given by

⇣
Le�L1

⌘⇣
J(Q(0),q1)� J(Q(L),q1)

⌘
= L2

⇣
J((Q(0)�Q f 1),q1)� J(Q(L),q1)

⌘
(7.6)

for the two pipelines are obtained. This equation is an input-output equivalent model for two and one
leak and can be interpreted as pressure indistinguishable profiles for both lines at their ends, respectively.
These indistinguishability regions justify the necessity of a transitory regime to locate simultaneous
leaks. In terms of the parameter l1 and the piezometric pressure head at the ends of the pipeline, the
distance between the first and second leak can be written as

L2 =
H(0)�H(L)�L1J

�
Q(0),q1

�
� (L�L1)J

�
Q(L),q1

�

q1

⇣
Q(0)�l1

h
H(0)�L1J

�
Q(0),q1

�i1/2⌘2
� J

�
Q(L),q1

� . (7.7)

Moreover, by considering (7.5), the parameters associated with the second leak can be expressed as

l2 =
Q(0)�Q(L)�l1

⇣
H(0)�L1J

�
Q(0),q1

�⌘1/2

⇣
H(L)+(L�L1�L2)J

�
Q(L),q1

�⌘1/2 . (7.8)

Finally, from the hydraulic gradient along both lines the inequality

z1 = L1 < Le < z2 = L1 +L2 (7.9)

can be validated. In other words, the positions of the leaks in a two leaks scenario are upstream and
downstream of the equivalent leak position Le.

Thus, if the pair (L1,l1) together with the equivalent leak position Le are assumed to be previously
known, one can estimate the rest of the unknown variables of the two leaks pipeline from (7.6), (7.7 ),
(7.8) and the condition imposed by the inequality (7.9). This means L2, l2 and Q f 2 can be estimated.

Therefore, by considering the above relationships and that only one leak occurs at the same time, an
iterative algorithm can be implemented as part of the monitoring system. The algorithm will be activated
each time a new equivalent appears and the equivalent leak (Le,le) is estimated. The values of this
estimation together with the historical leakage data of the line given by Li and li then allow the estimation
of the values associated with the leak i+1. The following subsection addresses a proposed solution for
the estimation of sequential leaks with small occurrence times between them.

7.3.1 Sequential leak location algorithm

By assuming that the physical parameters of the duct are known and the data of the flow rates and
piezometric pressures at the ends of the line (Q(0),Q(L),H(0),H(L)) are available, the algorithm for the
location of two sequential leaks on-line is described here. Since the friction parameter uncertainty has
been recognized in experimental studies (Billman and Isermann, 1987; Rojas et al., 2021), the diagnostic
algorithm is robustified by including an adaptive observer for the identification on-line of the gradient
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J(Q,q1). Moreover, to reduce the number of false leaks, an innovative redundant approach for symptom
generation is also incorporated. The equivalent model

Q̇(0) =
a1

Le

⇣
H(0)�H(Le)

⌘
�a1J(Q(0),q1),

Ḣ(Le) =
a2

Le

⇣
Q(0)�Q(L)�Qe(t)

⌘
,

Q̇(L) =
a1

L�Le

⇣
H(Le)�H(L)

⌘
�a1J(Q(L),q1)

(7.10)

is used for the identification of the pair (Qe,Le) with L > Le > 0, or of the parameter q1, according to the
assigned task.

HoldIdn-�1
Hydraulic Gradient

Adaptive
Estimator

Rec-Le
Equivalent
Parameter
Estimator

Cal-Li
Real

Parameter
Estimator

Measurements

ˆ �1

ˆ

ˆˆ

e

Ir

�e , Leˆ ˆ

Gen-Ir
Binary
Signal

Generator

Con-Nf
Score

of
Leaks

�1ˆ

Nf

Fig. 7.4: Diagnosis system scheme with main tasks Gen� Ir, Rec� L̂e, Idn�q1, Cal� L̂i, Con�Nf,
and the holder and the switch

The algorithm consists mainly of coupled estimation tasks driven by the symptom or binary signal

Ir =

⇢
0 if the system is awaiting the next leak
1 if the leak parameters are being estimated,

as a function of the data set and residual state. Figure 7.4 shows the interconnection of the estimators
where the prescribed tasks are detailed below.

• Gen� Ir. Generation of the binary signal Ir that governs the state of the algorithm according to the
following parallel conditions of the flow rates

– Condition 1 is active, if the convergence error given by SEKF = |e1|+ |e2| of the EKF (Extended
Kalman Filter) with e1 = Q(0)� Q̂(0) and e2 = Q(L)� Q̂(L) is greater than the positive threshold
TEKF .
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– Condition 2 is active, if the difference of the flow rates at the ends r = Q(0)−Q(L) is greater than
the positive threshold th.

Thus, if both conditions are not satisfied, Ir is off and θ̂1 is calculated over and over in (7.10). In
addition, the EKF simultaneously generates e1 and e2. If both conditions are active, Ir = 1, and the
value of θ̂1 is held. Furthermore, the EKF identifies the new equivalent parameters Le and λe. Both
thresholds of the above conditions are adjusted according to Isermann (2006).

• Idn− θ̂1. Identification of θ̂1 with known Le. This task is feasible according to Besançon (2007)
by assuming unknown signals H(Le) and θ1. Defining the output y =

(
Q(0) Q(L)

)T , the input

u =
(

H(0) H(L)
)T , and the unknown constant vector Θ =

(
θ1 H(Le)

)T the adaptive observer as-
sumes the model (7.10) transformed to the canonical observer form

ẏ =α(y,u, t)+β (y, t)Θ (7.11)

with α(y,u, t) =

(
a1
Le

u1

− a1
L−Le

u2

)
and β (y, t) =

(
−a1y2

1 −
a1
Le

−a1y2
2

a1
L−Le

)
. Thus, according to Besançon (2007),

the adaptive system

˙̂y =α(ŷ,u, t)+β (ŷ,u, t)Θ̂ − ky(ŷ− y); for any scalar ky > 0
˙̂

Θ =− kθ β (ŷ,u, t)T (ŷ− y); for any scalar kΘ > 0,
(7.12)

which includes Θ as a new state, is an observer of (7.11). Furthermore, if β is persistently exciting
(Narendra and Annaswamy, 1987) and β̇ is bounded, the parameter error also goes to 0. Thus, the
observer (7.12) is implemented for the estimation of θ1.

• Rec− L̂e. Reconstruction of the equivalent parameters Le and λe for the equivalent system (7.10)
with a known constant value of θ̂1 by applying an EKF . The EKF is designed by considering that
the dynamics of H(Le) is faster than the dynamics of Q(0) and Q(L). This assumption allows the
replacement of the second state in (7.10) by Ḣ(Le) = 0 with the constraint

0 = Q̂(0)− Q̂(L)− λ̂e

√
Ĥ(L̂e). (7.13)

Therefore, the identification task can be solved with the augmented model

ẋ = f (x,u, θ̂1),

y =Cx
(7.14)

with

x =
(

Q(0) Q(L) H(Le) Le
)T

, C =

(
1 0 0 0
0 1 0 0

)
and

f (x,u, θ̂1) =


a1
x4
(u1− x3)−a1Js(x1, θ̂1)

a1
L−x4

(x3−u2)−a1Js(x2, θ̂1)

0
0

 ,
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where only the unknown constant parameter Le is added to (7.10). Therefore, according to Reif et al.
(1998), the EKF algorithm for the continuous nonlinear system (7.14) is reduced to

˙̂x = f (x̂,u, q̂1)+K(t)(y� ŷ),
ŷ =Cx̂,

(7.15)

where K(t) = P(t)CT R�1 and P(t) is the solution of the Riccati equation:

Ṗ(t) =(A(t)+ Ih)P(t)+P(t)(A(t)+ Ih)T +QR�P(t)CT R�1CP(t), (7.16)

with the time-varying matrix A(t)= ∂ f (x,u,t)
∂x evaluated at x̂, QR and R are the noise covariance matrices.

When the error
e = y� ŷ

converges to 0, the estimated value L̂e and l̂e are used for the last leak evaluation.
• Con�Nf. Leak counter. The score NF is initialized to 0 and is incremented by 1 each time a new leak

occurs. The task is achieved by searching for a positive rising edge of (Q(0)�Q(L)).
• Cal� L̂i. Evaluation of the leak parameter Li, after the filter convergence, by the static relations (7.6),

(7.7 ) and (7.8) and considering the score Nf .

Since the static relations of Cal� L̂i and that the switch driven by the symptom Ir separate the signals
coming from the functions Idn� q̂1 and Rec� L̂e, respectively, the estimators of each task can be inde-
pendently designed. Therefore, by assuming that the algorithm starts under healthy conditions, the MSL
procedure is accomplished as follows.

The identifier Idn� q̂1 transfers the parameter q̂1 to the estimator Rec� L̂e, which estimates the
system state (7.14) in normal condition. This condition remains as long as the symptom Ir is off. At time
t f , when Ir switches on, the EKF estimates the equivalent leak Le and le with the fixed parameter q̂1
estimated at t f , and the score increases by 1. Moreover, the estimated equivalent leak parameters are
supplied to the function Cal�Li, which calculates the real parameter of the leak. Once the error SEKF
is less than TEKF , the Idn� q̂1 hold function is off, and the actual q̂1 is used by the EKF . In adition the
algorithm is again ready to catch another leak.

From an operation point of view, the algorithm works in three states.

• Detection State. By using (7.12) with Le and le known, q̂1 is estimated, Gen� Ir simultaneously
generates Ir and the EKF error remains close to 0. This stage remains so long as the symptom is off.
When Ir turns on, q̂1 is held, and the algorithm is switched to the Location State.

• Location State. By using (7.15) with constant q̂1 and adding Le and le as states, the new equivalent
leak is estimated. When the parameters converge, the residual Ir turns off, and the update stage starts.

• Update State. By using the equivalent parameters of the location stage, Le and le, the physical pa-
rameters of the last leak are calculated by (7.7), (7.8) and (7.6). Moreover, the leak score is increased
by 1, and the leak parameters are stored. Thus, the algorithm returns to the detection stage, and it is
ready to detect the next leak.
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7.4 SCADA-II System for Sequential Leaks’ Location

Let us begin from the whole SCADA-II system and finish with the main details. First of all, we have two
main parts in this system (in Fig. 7.5); the pipe prototype and the SCADA (supervisory control and data
acquisition) composed of the data acquisition interface and the PC with the FDI program in it.

PC

<<Interface>>

DAQ cRIO

FLOW & PRESSURE
SERVO VALVES & PUMPS

PIPE

PUMP

WATER RESERVOIR

SCADA

PROTOTYPE

Fig. 7.5: Layout of the SCADA-II system. Arrows mean data interchange. The PROTOTYPE dashed
block corresponds to the scheme of Fig. 7.2

As presented in Section 7.2, the prototype permits establishing the experiment conditions such as set
point flow rate in the pipe and which valve should be opened, as well as when and how much. Those are
the experiment conditions, but simultaneously there are flow rate and pressure sensors at the beginning
and end of the pipe. In addition, these sensors feed the SCADA with the actual flow and pressure data,
for FDI goals.

Analog data coming from the sensors need to be equal to the data processed in the computer. In order
to do that, an interface is needed that converts electrical signals (4-20 mA) to binary data and vice versa.
This interface is the DAQ cRIO shown in Fig. 7.5. The interface or data acquisition system (DAQ) is
integrated by a CompactRIO (cRIO) controller and two I/O (input/output) modules. Additionally, by
means of this interface the SCADA commands are sent to servo valves and pumps.

The SCADA-II, Fig. 7.5, is a LabVIEW program on a personal computer. This program handles
signals from and to the pipe system and runs the algorithm that detects the leaks and localizes them.

7.4.1 LabVIEW programming as a tool for SCADA-II implementation

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a design platform that uses a vi-
sual programming language. This visual programming, called graphical language G, was developed by
National Instruments (National-Instruments, 2021), and it is mainly used for data acquisition, instrument
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control and industrial automation. One of its characteristics is the data flow programming: when all data
is available all the subroutines (called sub VI, where VI is the acronym for virtual instrument) or func-
tions are executed. The graphical programming consists of wires that connect nodes creating a program
called virtual instrument (VI); a node can be another sub VI or a function. LabVIEW has a whole set of
functions available to the programmer. A VI has three components: a front panel, block diagram and a
connector pane. The front panel is the user interface and has controls and indicators (graphs or displays).
The block diagram or back panel is the graphical program associated with the source code. The connec-
tor panel has the input-output signals or data that may be connected to other VIs, controls or indicators.
To emulate real-time with Labview, a VI must be executed with very small time intervals.

7.4.2 Data acquisition system

Figure 7.6 shows the data flow of the proposed SCADA-II. The kernel of the data acquisition system is
the cRIO system that receives signals from sensors, sends signals to the inverter and the servo valves and
communicates with the HMI (human machine interface) in the host computer (PC).

PC

INVERTER

PUMP

cRIO

SIGNALS

cRIO 
SYSTEM

Fig. 7.6: cRIO data and signals’ layout of the SCADA-II

The data acquisition system is composed of the modules NI9203 and NI9265 connected to the cRIO-
9067 controller. The NI9203 module is an 8-channel current to binary data converter, and the NI9265
module is an 8-channel binary to current converter. The current loops range from 4 to 20 mA. Commu-
nication with the PC can be achieved via USB or Ethernet connector.

Figure 7.7 shows the cabinet with the inverter, the cRIO controller, the IO modules, the terminal block
connector and voltage source. IO modules are connected to the controller via an internal bus and are also
connected to the external devices via the terminal block connector.

7.4.3 The SCADA-II program

The main part of the SCADA-II is the software: the main program. The SCADA-II system is composed
of a physical phenomenon -flow in a pipe- with sensors that retrieve the phenomenon behavior and
actuators that change setpoints. All these parts, however, are nothing without a program that organizes
the entire operation of the system. In the next section, we explain what the user can see and do by means
of this program.
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Fig. 7.7: Hardware: Inverter on the left and cRIO controller, modules and terminal block connector on
the right

7.4.3.1 SCADA-II user interface

Communication between the user and the main program takes place on the user interface or HMI
shown in Fig. 7.8. The screen is divided into three windows: Process Commands, Data Monitoring
and Graphs of the estimation. The program runs with a sampling period of 100 ms.

Commands are as follows: sampling period, pump frequency, opening of the servo valve SV 1, opening
of the servo valve SV 2 and the stop button. The sampling period in milliseconds is established prior to the
system operation, by considering the time response of the system that is approximately 5 s. The aperture
of servo valves can be changed any time from 0 to 100%. Pushing the stop button ends the operation,
and the historic data sheet is then saved in the cRIO controller HD prior to stop main program.

The number of leaks, the time elapsed and the leak alarm are the monitored variables. Each time a new
leak is detected the variable Leak No is incremented. The elapsed time corresponds to the time recorded
from the beginning of the operation until the operation ends. The leak button is a luminous alarm that
turns red when a leak appears and remains red as long as a leak exists.

In the graphs window of the screen, there are two columns. In the left column pressures, flow rates
at the ends and servo valves apertures are shown. In the right column, estimated and calculated data are
shown: the q parameter associated with the hydraulic gradient, the parameters relative to the leak size
and of position le and Le, respectively, and the position of the leaks z1 and z2. To have a steady screen,
the user interface (HMI) is actualized each 5 periods, that is each 0.5 s.
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Fig. 7.8: PC screen shot of the SCADA-II HMI with leaks estimated at z1 and z2

7.4.4 Main program

Behind the user interface, there is a main program written in LabVIEW language. Figure 7.9 shows
an overall view of the flowchart for the SCADA-II program. This describes the set of activities that
take place during the process and the sequence in which they are accomplished. Furthermore, it can be
divided in two main activities: 1) those that occur at the beginning of and during the operation and 2)
those that correspond to parameter identification and leaks’ location. In the following, the states of the
diagram will be thoroughly explained.

7.4.4.1 Operation setup

The program begins with setting initial values of variables and constants, and the user establishes the
sample time period. This time period is related to the time of the loop that contains the main program. The
block if of the flowchart shown in Fig. 7.10 (a) indicates when the loop execution starts. Figure 7.10(b)
shows the flowchart of the program that interacts with the user. The program can be ended any time
when the user presses the stop button. Right after pressing the button, all data recorded are downloaded
to a data sheet that will be saved on the hard disk in the cRIO controller. If the program continues, the
hydraulic pump velocity can be changed any time in the interval from 30 to 60 Hz. The pipeline prototype
has two servo valves that can be actuated from the program in the range from 0 to 100% of aperture.
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Fig. 7.9: Flowchart of the SCADA program

7.4.4.2 Parameter identification and leaks location

Figure 7.11 shows the flowchart of the main program for leak diagnosis. It begins with the data reading
from the data acquisition system (DAQ). The reading process is shown in Algorithm 4. This is a subrou-



7 LabVIEW-Based SCADA System for Sequential Leaks’ Diagnosis in Pipelines 165

BEGIN

Initial 

conditions

Sampling time 

setting Tm

Sample 

time?

Yes

A

Multiple sequential leak 

detection in a pipeline.

Data reading 

from DAQ

Leak?

A

Yes

Parameter 
estimation

Leaks 
location

Leak counter

Adaptive 
observer

C

Inverter 

setting, Hz

Pump 

velocity?

Open 

valve?

%opening  

servovalve i

C

End?
Data sheet 

to HD END
Yes

Yes

Yes

B

B

BEGIN

Initial 

conditions

Sampling time 

setting Tm

Sample 

time?

Yes

A

Multiple sequential leak 

detection in a pipeline.

Data reading 

from DAQ

Leak?

A

Yes

Parameter 
estimation

Leaks 
location

Leak counter

Adaptive 
observer

C

Inverter 

setting, Hz

Pump 

velocity?

Open 

valve?

%opening  

servovalve i

C

End?
Data sheet 

to HD END
Yes

Yes

Yes

B

B

(a) Setting parameters and initial conditions (b) Operation point, pump and valves settings

Fig. 7.10: Flowcharts of subprograms: setting operating data and user interaction

tine that runs in the FPGA (field programmable gate array) area of the cRIO controller, where reading
and writing data are available in fact. AOi are the analog outputs, and AIi are the analog inputs.

Algorithm 4 Target program in FPGA: sensors reading and commands to inverter and servo valves
t

Input: Ts, AOi, i = 1, . . . ,4
Output: Ai, i = 1, · · · ,6

Set rank (0-20 mA) in AIs
for k do

[AI1, ...,AI6](k)→ FIFO
AO0(k)← Fpump
AO1(k)← Servo 1
AO2(k)← Servo 2
AO3(k)← Servo OUT

end for

The second block of the flowchart shown in Fig. 7.11 is the hydraulic gradient estimator, that is
characterized by (J(Q,θ1) = θ1Q2) described in Section 7.3. The sub VI that performs this task is shown
in Fig. 7.12, and Algorithm 5 shows the parameter estimation implementation.

Returning to the flowchart shown in Fig. 7.11, the next block is the Leak condition; if there is no
leak, the flow returns to node A and waits for a new sample period. If there is a leak, a leak counter and
location loop follows. The system identifies a leak when residual r(t) is greater than its threshold th.
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Algorithm 5 Pressure gradient parameter estimation q̂ (7.12)
Input: H0,HL,Q0,QL, Ir,Le
Output: q̂1

Set ky, kq
if Ir = 0 then

ŷ = a(ŷ,u, t)+b (ŷ,u, t)q̂ � ky(ŷ� y)
q̂ =�kq b (ŷ,u, t)T (ŷ� y)

else[Ir = 1]
Hold q̂

end if

Fig. 7.12: sub VI for q identification

To avoid false leak alarms, an adaptive threshold for r(t) is implemented. This adaptive threshold
is an improvement of proposal th(t) = at1 +at2s(t)+at3|ṡ(t)|, given by Isermann (2011), where s(t)
is a reference signal taken from the system, Q0 is used in this implementation. The improvement here
consists of removing the absolute value of the derivative. The reason for the change is because if one
considers the flow rate Q0(t) as the reference signal, Q̇0(t) could be negative if noise, uncertainties or
operation point changes exist. This condition then produces that the threshold still increases the creation
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of false alarms. Thus, the novel adaptive threshold of the SCADA-II is given by

th(t) = at1 +at2Q0(t)+at3Q̇0(t), (7.17)

with at1,at2 and at3 empirical values set by a trial and error process. As a consequence, when r(t)> th(t)
a binary flag alarm is activated to avoid the increment of the leak counter when no leak occurs.

The loop of estimation of Fig. 7.11 begins with the Leak counter block where the residual r(t) is ana-
lyzed, and each time a rising edge appears, a new leak has occurred, and the counter Lc, is incremented.

The next block is the Equivalent parameters estimator where the EKF is implemented to find the
equivalent parameters and the binary signal. The LabVIEW sub VI that performs this task is shown in
Fig. 7.13. Algorithm 6 shows the sequence of operations that occur in this VI. It begins by solving a
Riccati equation, then finds the equivalent parameters Le and le and sets the binary signal Ir.

Fig. 7.13: sub VI for equivalent parameter identification by EKF

The last block of Fig. 7.11 which is the Leaks location, is a process that depends on leak counter value
and estimated equivalent parameters and starts assuming the first leak z1 = L1 as L̂e. Figure 7.14 shows
the sub VI that generates the distance L2 of the second leak by assuming that first leak is already known
and calculates the position of the second leak z2 = L1 +L2. The commands that perform the location are
shown in Algorithm 7.

Fig. 7.14: sub VI for leak location
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Algorithm 6 Le and le estimation and Ir setting
Input: H0,HL,Q0,QL,q1, th
Output: L̂e, l̂e, Ir

Set QR,R,TEKF ,
r = Q0�QL, e1 = Q0� Q̂0, e2 = QL� Q̂L, SEKF = |e1|+ |e2|
if r > th then

if SEKF > TEKF then
Solves Riccati equation for Ṗ, Eq. (7.16)
K(t) = P(t)CT R�1

Solves ˙̂x, ŷ, Eq. (7.15)
Solves l̂ , Eq. (7.13)

else
Hold l̂ , L̂e

end if
else

Hold l̂ , L̂e
end if
if r > th then

if SEKF > TEKF then
Ir = 1

else
Ir = 0

end if
else

Ir = 0
end if

Algorithm 7 Leaks location z1 = L1 and z2 = L1 +L2

Input: L̂e, l̂ , Lc, Q0,HL, Q0, HL
Output: z1, z2

if Lc = 0 then
z1 = 0,z2 = 0

else
if Lc = 1 then

z1 = L̂e
else

if Lc = 2 then
Solves Eq. (7.6) for L2
z2 = z1 +L2

end if
end if

end if
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Fig. 7.15: Estimated parameters and leaks location. Arrows indicate the occurrence time of the leaks.
Dashed lines are the real position of leaks

7.5 Conclusions

A remarkable finding is the success of the method for detection and localization of two consecutive leaks
implemented in this SCADA-II, which operates in real-time. Even a Riccati equation is solved at each
step.

Figure 7.15 shows the time evolution of the estimation plotted with the help of MATLAB from on-line
data. The experiment consists of two sequential leaks caused with the valves V2 and V3. Upper graphs
show the estimated parameters associated with the equivalent leak, and the lower two graphs show the
physical position of the leaks.

Some characteristics are to remark of the hydraulic system. First of all is, even though the system is
working in steady state: signals are not completely steady, they are changing around a mean value. This
is because pumps, discontinuities inside the pipeline and continuous recycling of the leakage flow causes
disturbances in the system.

Another remark is that the parameter estimation requires around 30 s to reach the final value. As a
consequence, this time interval constrains how close in time the leaks can occur.

With respect to the performance of the novel adaptive threshold, diverse experiments have shown that
the alarm signal is activated with an outflow of the leaks less than 1% with respect to the nominal flow
rate. Figure 7.16 shows the front panel of the corresponding sub VI. One can see the behavior of the
residual versus the adaptive threshold when a leak and a change in the operating point (OP) are present.
The leak appears at 58 s and the change in OP at 115 s. The adaptability of the threshold, as a function
of Q(0), can be seen when the operating point is changed by the pump frequency from 60 Hz to 55 Hz,
for a while residual goes down so the threshold.
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Fig. 7.16: Adaptive threshold front panel

As a conclusion, the goal of designing a SCADA at UNAM and its validation for sequential leaks
detection and localization was fully achieved. Nevertheless, work remains to be done for future versions.
The settling time of the estimators and location error must be reduced.
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en México, XVI:139–151.
Chaudhry, M. C. (2014). Applied hydraulic transients. Springer: New York.
E+H (2018a). Cerabar s pmp71. Endress + Hauser.
E+H (2018b). Proline promass 80F, 83F. Endress + Hauser.
Fang, W., Adegboye, M., and Karnik, A. (2019). Recent advances in pipeline monitoring and oil leakage

detection technologies: Principles and approaches. sensors, 19(2548).
GF (2018). Type 130/133 electrically actuated ball valve. Georg Fischer Piping Systems.
Isermann, R. (2006). Fault-Diagnosis Systems. Springer, Berlin.
Isermann, R. (2011). Fault Diagnosis Applications. Springer Verlag.
Liu, C., Li, Y., and Xu, M. (2019). An integrated detection and location model for leakages in liquid

pipelines. Journal of Petroleum Science and Engineering, 175:852–867.
Mitsubishi (2018). Inversores freqrol. Mitsubishi Electric.
Moubayed, A., Sharif, M., Luccini, M., Primak, S., and Shami, A. (2021). Water Leak Detection Survey:

Challenges & Research Opportunities Using Data Fusion & Federated Learning. IEEE Access.
Narendra, K. S. and Annaswamy, A. M. (1987). Persistent excitation in adaptive systems. International

Journal of Control, 45(1):127–160.
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Chapter 8

Observer-based calibration of a power-law model for head loss in
pipelines

Lizeth Torres1 and Cristina Verde1

Abstract This chapter presents a real-time approach based on a nonlinear state observer for estimat-
ing both the coefficient and the exponent of a power-law model for head loss in a pipeline. Such a
power law is nothing but a generalization of conventional models such as the Darcy-Weisbach and the
Hazen-William formulas. The interest in estimating the parameters of the power law is twofold: to avoid
handling values of physical parameters that may be uncertain, such as relative roughness, and to have
an appropriate model for computational pipeline monitoring applications, such as leak detection and
localization. The real-time estimation is performed by a state observer from the following available
information of the pipeline: a flow rate and two pressure head recordings. To demonstrate how the pro-
posed approach works, the state observer was implemented in MATLAB and experimental data from
a lab pipeline was used to feed it. In addition, numerical simulations of a leak location algorithm are
presented to show how a well-calibrated head loss model is highly necessary for leak diagnosis.

8.1 Introduction

The proper management of pipelines and fluid distribution networks requires some tasks that should be
preferably executed in real time, for example, the detection and identification of faults or the pressure
control for minimizing fluid losses (Verde and Torres, 2017; Puig et al., 2017). Usually these tasks are
performed by algorithms based on mathematical models that are formulated from physical principles. In
addition, although these algorithms have been shown to work very well in practice, they have an intrinsic
problem: they must be frequently updated because their governing equations are functions of physical
parameters that evolve over time in a slow or drastic way according to the operational and environmental
conditions. In particular, in pipelines that have been in service for a considerable time, there are two
physical parameters that notably change: the roughness and the internal diameter. Both in fact can be
related to a normalized parameter: the relative roughness.

Relative roughness varies because of the natural deterioration processes that affect the internal wall
of the pipelines such as corrosion, erosion, tuberculation or the deposit of materials. Such a variation
directly modifies the dissipation of energy between the wall and the fluid.

1Instituto de Ingenierı́a UNAM, Ciudad Universitaria, Coyoacán, 04510, Mexico, e-mail: ftorreso@iingen.unam.mx and verde@unam.mx
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The total energy dissipation in a pipeline is the sum of two hydraulic losses: the quasi-steady and
the unsteady losses (Adamkowski and Lewandowski, 2006). Several authors have tried to model the un-
steady loss, which is present in fast transients, by proposing in parallel, models that match experimental
data and methods to calibrate them. These models and the associated calibration methods, however, are
not discussed here since the unsteady loss is out of the scope of this chapter. The reader may consult the
reviews provided in Bergant et al. (2001) and Savic et al. (2009) to know more about the state-of-the-art
research on this topic.

The quasi-steady loss, which is known as head loss or pressure drop, can be divided into two main
classes: major losses, associated with energy loss caused by viscous friction in the pipeline wall, and
minor losses, associated with bends, fittings and valves. The head loss can be then expressed as follows
(White, 1999):

DH(Q) = DHf (Q)+
N

Â
i=1

DHm(Q), (8.1)

where Q is the flow rate in the pipeline, DHf (Q) denotes the major losses and
N

Â
i=1

DHm(Q) represents the

sum of the minor losses.
The conventional equations used to calculate the major losses are the Darcy-Weisbach (DW) equation

together with more empirical formulas such as the Hazen-Williams (HW) and the Manning equations,
which are power laws (Moore, 1959). The DW equation, however, is more accepted with respect to the
empirical formulas because it is dimensionally homogeneous and applicable to water as well as to other
fluids (Liou, 1998). The DW equation is expressed as follows:

DHf (Q) = f (Q)
L
f

Q2

2gA2
r
, (8.2)

where f (Q) is the dimensionless friction factor, L is the length of the pipeline, f is the pipeline diameter,
Ar is the cross-sectional area and g is the gravitational acceleration. Minor losses represent additional
energy dissipation provoked by pipeline devices that act against the fluid and reduce its energy, velocity,
or momentum.

The major and minor losses can also be simultaneously calculated with the DW equation, but the real
length L involved in the DW equation must be replaced by a equivalent length that depends on the flow
rate and characteristics of the pipeline accessories (Chapter 2, Larock et al. (1999)).

As it can be seen, the DW equation is a function of the flow rate and other physical parameters
such as the friction factor, which is also a function of the flow rate (through the Reynolds number)
and additional parameters, such as the relative roughness and the kinematic viscosity. For laminar flow,
the friction factor can be calculated by using the Hagen-Poiseuille law, which is very simple (Hitzer,
2001). Nevertheless, in real operating conditions, pipelines work in the turbulent flow, and the friction
computation becomes more complicated. In such a case, the consensual way to calculate the friction
factor is by using the Colebrook-White (CW) equation, which is an implicit formula for which many
explicit approximations have been proposed (Brkić, 2011). A mutual problem of using the CW equation
or its approximations, however, is that they require the current value of the relative roughness along the
pipeline. The relative roughness can be measured in real time by using a profilometer (as seen in Farshad
et al. (2001); Sletfjerding and Gudmundsson (2003)), but it is necessary to wait for the complete scan of
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the pipeline’s internal wall. This test can be quite lengthy if the pipe is long or difficult to access, which
leads to considering better alternatives for avoiding the use of the actual value of the relative roughness.

An alternative is the calibration of a model for the head loss1. To perform this alternative, it is neces-
sary to provide a calibration method (a parameter estimation method) and a model of the head loss (e.g.,
the DW equation or the HW formula) with parameters to be experimentally estimated.

The calibration problem remains an open problem. Currently, many researchers dedicate much effort
in proposing more efficient and easy-to-tune methods to convince practitioners to use them. Recently
in Kumar et al. (2010), the authors presented an approach to estimate the roughness coefficients of
the pipelines of a network, which is based on a k-means clustering algorithm and on the theory of
graphs. In the same year, the Battle of the Water Calibration Networks (BWCN) was conducted by 14
teams from academia, water utilities, and private consultants. The BWCN results were given at the 12th
Annual Conference on Water Distribution Systems Analysis and presented in Ostfeld et al. (2011). More
recently, in Gao (2017) a method based on weighted least squares (WLS) was presented to compute the
Hazen-Williams C factors of pipelines. In Dı́az et al. (2017), the authors proposed a method based on
a multi-period state estimation and mathematical programming decomposition techniques. Additionally,
they presented an analysis of the observability of the roughness from available measurements.

In this spirit, this contribution proposes a real-time approach based on a state observer for calibrating
the coefficient and the exponent of a power law that models the head loss only as a function of the
flow rate and not as a function of the relative roughness and other uncertain parameters. The proposed
approach only requires a flow rate and pressure measurements. Therefore, this method can be used
in trunk pipelines instrumented with pressure and flow rate sensors placed at locations such as pump
stations, where these sensors are usually installed.

The benefits of proposing a power law to approximate the total head loss together with a method
for calibrating it in real time are the following: (a) to have a head loss model that expresses a general
representation of conventional formulas used to compute the head loss such as the HW, the Manning or
the Valiantzas equations (Chapter 2, Larock et al. (1999), Chapter 2, Chaudhry (1979)); (b) to avoid using
a complicated formula such as the CW equation, which is implicit because it requires iterative methods
to be solved; (c) to have a valid model for a given operation region instead of formulas for describing the
complete turbulent regimen; (d) to have an identifiable model, i.e., a model with a structure involving
easily estimated parameters by means of real-time algorithms; (e) to have a differentiable function.

An essential requirement in applying our approach is that the flow in the pipeline must be excited to
ensure the identifiability of the parameters. This means that the flow in the pipeline must be perturbed
during a short period while the parameters are estimated. Therefore, in order to satisfy the excitation
condition, a steady-oscillatory flow in the pipeline is induced by injecting a sinusoidal signal into the
frequency drive of the supply pump. Many of the off-line methods for detecting leaks and identifying
parameters proposed by the hydraulic community, which have been verified in a laboratory, are based
on the induction of steady-oscillatory flow in a pipeline by the sinusoidal maneuver of a valve (Xu and
Karney, 2017).

To estimate the parameters of power laws in the context addressed here, some approaches have been
proposed: for instance, those presented in Datta and Sridharan (1994) and Reddy et al. (1996), which use
least squares and information (pressure and flow rate) recorded during a prescribed period. Moreover,

1 The parameter estimation process in a model is called the calibration process in hydraulics.
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the reader can find in Savic et al. (2009) a masterful review of proposed methods to calibrate pipelines
and networks. The authors of this review categorize the methods as steady-state and transient and discuss
the advantages and drawbacks of each one.

The novelty of this contribution is an experimental validation and the improvement of the approach
presented in Torres and Verde (2018), which in turn was inspired by early results from Rojas et al.
(2018), where the real-time estimation of the coefficients of both a quadratic and a cubic equation that
approximate the head loss in a pipeline is proposed.

8.2 Physical system and modeling

This section describes the characteristics of the pipelines for which the proposed method can be used.
This section also presents the extended model (an auxiliary model) used for the design of the state ob-
server that performs the parameter estimation. Such an auxiliary system is deduced from a mathematical
model commonly used in hydraulic problems: the rigid water column (RWC) model (Cabrera et al.,
1995; Nault and Karney, 2016), which in turn is deduced from physical principles.

8.2.1 Physical system

The approach presented in this chapter works for pipelines that satisfy the following: unidirectional flow
and constant cross-sectional area. Furthermore, such pipelines must be instrumented such that pressure
head measurements at the ends of the pipeline are available, as well as a flow rate recording at any point
of the pipeline.

8.2.2 Rigid water column model

In this chapter, the model considered for representing the head loss in a pipeline is the power law DH =
WQg , where W and g  2 are parameters related to the friction losses and fluid properties.

Since the goal of this chapter is to propose a real-time method for experimentally estimating W and
g by using a state observer, a dynamical model involving these parameters is needed. This model is the
so-called RWC model, which describes the flow in one dimension by ignoring the compressibility of
the fluid and the elasticity of the conduit such that the entire column of fluid is assumed to move as a
rigid body. The RWC model can be used to describe short pipelines or small sections of long-distance
pipelines. For describing the overall behavior of the flow in pressurized long-distance pipelines, the fluid
should be considered as compressible or slightly compressible. By assuming slight compressibility, the
model must be modified to consider the unsteady friction, which involves the pressure wave propagation
velocity and pressure changes along the spatial domain. This is out of the scope of this chapter.

The RWC model for a pipeline without extractions is expressed by the following equation (Islam and
Chaudhry, 1998; Nault and Karney, 2016):
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Q̇ = bDH�aQg+1, (8.3)
ym = Q,

where ym is the measured flow rate, b and a are parameters with appropriate units of measure.
If Q̇ = 0, Eq. (8.3) becomes an expression for the head loss

DH =
a
b

Qg+1, (8.4)

which, by defining W = a/b , becomes
DH = WQg+1, (8.5)

which is nothing but the head loss model to be updated experimentally in real-time. Therefore, to obtain
an estimation of W , a and b must first be estimated.

Once W and g are estimated, these can be associated with the physical characteristics of both the
pipeline and fluid by means of conventional formulas for head loss, e.g., the Darcy-Weisbach equation,
the Hazen-Willian equation or the Gauckler–Manning–Strickler formula. If the Darcy-Weisbach is used
for a pipeline with length L, then g = 1 and W = f (Q)L/2gfA2

r .

8.3 Real-time calibration approach

In order to estimate a , b and g by using a state observer, these parameters can be considered as state
variables and they are added to the state vector of the RWC model given by (8.3). The above results
in an extended model that combines the equations governing the evolution of the original state and the
equations describing the evolution of the parameters.

8.3.1 Extended model

The extended model is obtained by defining the following states: x1 = � ln(Q), x2 = b , x3 = aQg and
x4 = g . In addition, these states form the state vector x = [x1 x2 x3 x4]T . The resulting extended model
reads as follows:

ẋ =

0

BB@

0 �u1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCAx+

0

BB@

0
0

x3x4u2
0

1

CCA,

y =
�

1 0 0 0
�

x, (8.6)

where u1 = DH/Q and u2 = Q̇/Q are assumed to be the inputs that form the input vector u = [u1 u2] and
the output variable is x1.

Remark 1: The system given by Eq. (8.6) has the following general structure:
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ẋ = A(u)x+B(u,x),
y = Cx, (8.7)

where A(u) 2 Rn⇥n depends only on inputs and B(u,x) 2 Rn⇥1 is a nonlinear vector with a triangular
structure (Besançon, 2007).

Therefore, one proposes in the following paragraphs a state observer for a system with the structure
given by Eq. (8.7).

8.3.2 State observer

For the state estimation of extended dynamical systems with the form given by Eq. (8.7), it was proven
in Torres et al. (2012) that with a specific excitation and under the usual technical (Lipschitz) assumption
for a high-gain design, one can obtain an asymptotic estimation of the extended state with the following
high-gain observer:

˙̂x = A(u)x̂+B(u, x̂)+SCT (y� ŷ), (8.8)
ŷ = Cx̂,

where x̂ is the estimated extended state vector, u is the input vector, y is the measured output, and S is the
solution of the Lyapunov equation

Ṡ = lS+[A(u)+dBl (u, x̂)]S+S[A(u)+dBl (u, x̂)]T �SCTCS, (8.9)

where l is a parameter for adjusting the convergence rate and dBl (u, x̂) = ∂B(u, x̂)/∂ x̂ is the Jacobian
of B(u, x̂). Particularly, for system (8.6), the Jacobian reads as follows:

dBl (u, x̂) =
∂B(u, x̂)

∂x
=

0

BB@

0 0 0 0
0 0 0 0
0 0 u2x̂4 u2x̂3
0 0 0 0

1

CCA . (8.10)

Remark 2: Notice that â can be obtained as a = x̂3/(�exp(x̂1))x̂4 .
Remark 3: Since the estimations of â , b̂ and ĝ from the state observer are quantities that evolve over

time and may contain both noise and unmodeled effects, the mean of these estimations must then be
calculated once these estimations reach steady state in order to have a unique value: ā , b̄ and ḡ . The
variation of the estimates from the mean values can be calculated as follows: ea = ā � â , eb = b̄ � b̂
and eg = ḡ� ĝ to analyze the unmodeled effects.

A condition for the convergence of the estimation is that inputs u1 and u2 must be persistently exciting:
they need to satisfy a persistent or excitation condition, which is complicated to fulfill in advance. There-
fore, inputs are usually designed heuristically and checked afterwards. Recently, some optimization-
based methods for characterizing the persistent inputs for a particular class of systems have been pro-
posed; see Scola et al. (2018) for instance. These methods, however, need to be extended to other classes
of nonlinear systems.
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8.3.3 Persistent condition: Steady-oscillatory flow

In this contribution, to obtain inputs that satisfy the persistent condition, the procedure detailed in
Besançon (2016) was used, which states that a persistent input may be chosen on the basis of the output
derivatives’ mapping. Therefore, the mapping for system (8.6) was calculated, which reads as follows:

F(x(t),u(t),y(t)) =

0

BB@

y(t)
ẏ(t)
ÿ(t)

y(3)(t)

1

CCA=

0

BB@

x1
�x2u1 + x3
�x2u̇1 + x3x4u2

�x2ü1 + x3x2
4u2

2 + x3x4u̇2

1

CCA . (8.11)

The mapping (8.11) becomes injective as soon as u1, u2 and their derivatives are nonzero. Therefore,
for any input with period T , the excitation condition is validated in a time window given by the period T .
Sinus-like pressure heads and flow rate are natural candidates for satisfying such an injectivity. Moreover,
many of the off-line methods for detecting leaks and identifying parameters proposed by the hydraulic
community, which have been verified in a laboratory, are based on the induction of steady-oscillatory
flow in a pipeline by the sinusoidal maneuver of a valve (Xu and Karney, 2017).

8.3.4 Derivative of the flow rate measurement

For implementing the state observer (8.8), the derivative of the flow rate Q measurement is required.
To obtain such a derivative, the following two steps are proposed, taking into account both the periodic
nature of the signal and the knowledge of its fundamental frequency.

1. Estimate on-line the Fourier coefficients that approximate the signal. This task can be achieved by
using the following proposed observer, which is based on an auxiliary system.
The first state of the auxiliary system (used for the observer design) is the integral of Q expressed as
the finite version of the Fourier series:

n1(t) =
Z t

0

"
a0

2
+

N

Â
i=1

(ai cos(iwt)+bi sin(iwt))

#
dt, (8.12)

where N denotes the total number of the frequency components taken into account to approximate the
signal Q.
By defining the Fourier coefficients a0, ai and bi as the rest of the states, the auxiliary system is defined
as follows:
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ṅ =

0

BBB@

0 1 cos(wt) sin(wt) ... cos(Nwt) sin(Nwt)
0 0 �w sin(wt) w cos(wt) ... �Nw sin(Nwt) Nw cos(Nwt)
...

...
0 0 �wN sin(wt) wN cos(wt) ... �NNwN sin(Nwt) NNwN cos(Nwt)

1

CCCA

| {z }
Aw

n , (8.13)

yw = Cwn ,

where the state vector n 2 RM and the output vector Cw 2 RM are, respectively, defined as

n =

Z t

0
Q a0 a1 b1 ... aN bN

�T
,

Cw = [1 0 ... 0].

Furthermore, M = 2N +2 is the total number of states.
The states of system (8.13), i.e., the Fourier coefficients, can then be estimated by using the following
state observer:

˙̂n = Awn̂ +Kwew , (8.14)
ŷw = Cwn̂ , (8.15)

where ew =
R t

0 Q� ŷw , Kw = SwCT
w and Sw is calculated with the Lyapunov equation

Ṡw = µSw +AwSw +SwAT
w �Sw(CT

wCw)Sw , (8.16)

where µ is the parameter for manipulating the convergence rate.
Observer (8.14) was tuned: µ = 1, Sw(0) = I, where I is the identity matrix, the state initial conditions
were chosen to be 0 and N = 3. This latter parameter was chosen in this way to consider only the more
meaningful frequency components: the fundamental frequency and two harmonics.

2. Construct the derivative of Q by using the estimated Fourier coefficients as follows:

ˆ̇Q =
N

Â
i=1

�
�âiiw sin(iwt)+ b̂iiw cos(iwt)

�
, (8.17)

where N = 3.

Thus, by using the two estimators (8.8) and (8.14), the implementation to obtain the parameters of the
power law is summarized in the scheme given in Fig. 8.1.

8.4 Experiments

The results described below were obtained during experimental tests developed in a pipeline located
at II-UNAM. A layout of the pipeline and its physical parameters are presented in Fig. 8.2 and Table
8.1, respectively. The installation consists of a storage tank of 10 [m3] and a spiral loop on the vertical
plane that returns the water to the tank. In addition, a servo valve is connected at the end of the line to
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Fig. 8.1: Proposed approach

Fig. 8.2: Pipeline located at the hydrodynamics laboratory of II-UNAM

Table 8.1: Parameters of the laboratory pipeline

Parameters Values
D [m] 0.076
L [m] 163.715

g [m/s2] 9.81
b [m/s] 1330

n [m2/s] 10�6@20°C

restrict the water flow. Two hydraulic pumps of variable speed fix the upstream boundary condition of
the system: Pump 1 with a maximum power of 7.5 [HP] and Pump 2 with a maximum of 10 [HP]. Only
Pump 1 was used here by changing the operation points with a variable frequency driver. Six valves
are installed to emulate leaks or branches. The pipeline is instrumented with two flowmeters and two
pressure sensors at the extremes. The Promass 83F flowmeters are based on the Coriolis principle with
a maximum error of ±0.05%, while the Cerabar PMP71 pressure sensors are based on the deflection
measurement of a diaphragm with a precision of 0.05%. All data during the experiments were sampled
at 100 [ms].
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In what follows, the description and analysis of each of the elements involved in the implementation
and execution of the proposed method are presented.
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Fig. 8.3: Pressure head and flow rate recordings taken during the changes of operating point

8.4.1 Steady-state flow

Table 8.2: Steady-state operating points (OPs)

OP Q̄ [m3/s] DH [mH2O]
A 0.0112 15.3839
B 0.0103 13.0320
C 0.0093 10.8155
D 0.0083 8.7336
E 0.0073 6.8807
F 0.0063 5.2348
G 0.0053 3.7866
H 0.0043 2.5240
I 0.0033 1.4993
J 0.0022 0.6865
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To capture and show the behavior of the head loss as a function of the flow rate, the pipeline was set at
different operating points by manipulating the supply pump through a variable frequency drive. Figure
8.3 shows the recordings taken during the experiments: the flow rate, which was measured upstream in
the pipeline, and the head loss calculated from pressure records measured upstream and downstream in
the pipe. The staggered form of the recorded signals reveals how the change of operating points was
performed: from the highest possible point when the pump operates at the electrical network’s frequency
to the lowest point when the flow measurement was still reliable. The operation points are labeled with
the letter A, B, C,...,I. Once the data acquisition was concluded, the mean of the flow rate measurement at
each operating point, denoted hereafter as Q̄, was obtained as well as the mean of the head loss, denoted
as DH. Table 8.2 contains the values of Q̄ and DH.

8.4.2 Steady-oscillatory flow

One way to generate steady-oscillatory flow in the laboratory pipeline is by injecting a sinusoidal signal
into the pump’s variable frequency drive (VFD). Taking this fact into account, two different steady-
oscillatory flows were generated for testing the proposed calibration approach. The frequency of both
sinusoidal signals injected into the pump’s VFD was the same: w = 0.1p [rad/s] (i.e. f = 0.05 [Hz]).
The amplitude and offset of the hydraulic variables associated with both steady-oscillatory flows are
listed in Table 8.3.

Figure 8.4 shows the head loss as a function of the flow rate for both the high flow and the low
flow. This figure highlights the fact that oscillatory flows only cover a range of the total range of all the
operating points used to show the head loss behavior. Figure 8.5 shows the derivative of the flow rate
corresponding to the high flow.

Table 8.3: Features of the generated steady-oscillatory flows

Variable Low flow High flow
Q Offset: 0.007351 [m3/s] Offset: 0.00932 [m3/s]

Amplitude: 0.0032 [m3/s] Amplitude: 0.0032 [m3/s]
Hin Offset: 11.15 [mH2O] Offset: 16.02 [mH2O]

Amplitude: 8.192 [mH2O] Amplitude: 9.75 [mH2O]
Hout Offset: 4.03 [mH2O] Offset: 5.00 [mH2O]

Amplitude: 1.43 [mH2O] Amplitude: 1.84 [mH2O]

8.4.3 Tuning of the state observer

Two estimations of the power-law parameters were performed. The first by using the high flow as the
excitation and the second one by using the low flow. Both estimations were executed by using the same
tuning parameters for the state observer (8.8). The observer was tuned by setting l = 1. Its initial condi-
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Fig. 8.4: Head loss versus flow rate in steady state and steady-oscillatory state
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Fig. 8.5: Q̇ in a time window of its computation for the high flow

tions were set as follows: x̂(0) =
�

0.12 0.001 0.01 0.08
�T and S(0) = I. The observer was implemented

in MATLAB/Simulinkr by using the ODE3 solver with D t = 0.001 [s] as the time step. Figure 8.6
shows the time evolution of b̂ and ĝ for the high flow and the low flow. The means of the estimated
parameters for the high flow and low flow were very close. In other words, the estimation results are
slightly insensitive to the offset of the steady-oscillatory flow. Therefore, only the means corresponding
to the high flow are considered in the rest of the discussion, which indeed resulted as follows: ḡ = 0.8897,
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b̄ = 2.088⇥ 10�4 and ā = 14.35. A consequence of these values is W̄ = ā/b̄ = 74569, which is the
coefficient of the estimated head loss given as dDH = 74569Q1.8897.
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Fig. 8.6: Time evolution of b̂ and ĝ by using the high flow and the low flow as excitation

8.5 Analysis of the results

In order to evaluate the performance of both the power law and the proposed algorithm, two evaluations
were performed.

8.5.1 Model comparison

The first is a comparison of the errors calculated from real data and several models of the head loss
in steady state. These models are as follows: the Hazen-Williams (HW) formula, a quadratic equation
without the linear term and a quadratic equation. The coefficients of the head loss models were also
estimated by using state observers. The errors are calculated as the difference between the experimental
data and the estimated with each formula, i.e., e = DH �dDH. The resulting errors are presented in
Table 8.4. The smallest errors are written in bold. Notice that the power law approximates with better
accuracy the behavior of the head loss at almost all the operation points. To corroborate this fact, a visual
comparison can be performed in Fig. 8.7, which concretely shows the estimated head loss (with each
formula) normalized with respect to the real head loss. It is noticeable that the power law and the HW
formula approximate with better accuracy the head loss behavior.
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Table 8.4: Modeling errors

OP WQg+1 q1Q2 q11Q2 +q21Q q2Q1.852

A 2.4518e-06 -0.3588 -0.0541 0.0770
B -0.0032 -0.1789 -0.0549 0.0191
C 0.0649 0.0419 0.0057 0.0420
D 0.0207 0.1086 -0.0538 -0.0345
E 0.0188 0.1820 -0.0768 -0.0577
F 0.0127 0.2175 -0.1064 -0.0744
G 0.0114 0.2275 -0.1307 -0.0765
H -0.0078 0.1922 -0.1681 -0.0874
I -0.0283 0.1332 -0.1962 -0.0924
J -0.0529 0.0527 -0.2097 -0.0952
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Fig. 8.7: Comparison of different head-loss models in steady state

The second evaluation is a comparison between the estimation results provided by the proposed ap-
proach and the results obtained with the next estimation methodology. The MATLAB instruction fit
was used to find the parameters of the power law by interpolating the operation points B,C and D, which
correspond to the same operation range of the oscillatory flow used for the estimation with the state ob-
server: the high flow. Check Fig. 8.4 to verify this fact. The results were W f it = 68730 and g f it = 0.8717.

The relative errors of the fitting for each operation point by using both methods are displayed in Table
8.5. Note that the adjustment with the power law estimated with the proposed approach has small errors
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Table 8.5: Approach errors

OP Online-based approach MATLAB(B:D)
A 2.451⇥10�6 0.0108
B -0.0032 -0.0146
C 0.0649 0.0358
D 0.0207 -0.0204
E 0.0188 -0.0293
F 0.0127 -0.0376
G 0.0114 -0.0368
H -0.0078 -0.0498
I -0.0283 -0.0612
J -0.0529 -0.0741

in almost all points of operation, except points C and D. This fact is a clear evidence that the proposed
method estimates accurately the values for the power law.

8.6 Relevance of head loss calibration in leak location

One of the requirements for implementing a model-based fault diagnosis system is to have a suitable and
well-calibrated model. Furthermore, when we speak about calibration in the context of modeling and
analysis of dynamic systems, we refer to the identification of systems, which is the process by which the
parameters of a model are adjusted, using data measured from the real process. Thus, the error between
the model and the process is the smallest possible using some metric.

In the context of Fault Detection and Identification, there are parameters or quantities that can most
notably affect the diagnosis of a fault, so their estimation during calibration should be emphasized to
obtain the best accurate diagnosis. In the case of leak detection and location, this quantity is head loss.

To verify the above remark, numerical simulations of a leak location algorithm based on a state ob-
server were performed. The state observer is based on the model, which describes the flow in two dif-
ferent sections of the pipeline: the section to the left of the leak (namely Dz = z`� z0) where the head
loss is DH = Hin�H` and the section to the right of the leak (namely Dz = L� z`) where the head loss
is DH = H`�Hout :

Q̇in =
q

z`� z0
(Hin�H`)�aQg+1

in , (8.18)

Q̇out =
q

L� z`
(H`�Hout)�aQg+1

out . (8.19)

where Qin and Qout are the inlet an outlet flow rates, respectively. Hin and Hout are the upstream and
downstream hydraulic heads, respectively. q = gAr, a is a factor involving the friction losses, g is the
head loss exponent, z0 = 0 is the origin coordinate (the upstream end) of the pipeline, z` is the leak
coordinate (position) and H` is the pressure head at the leak junction.
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If H` is replaced by any of the following equations obtained from (8.18) and (8.19) in steady state

H` = Hin�
a
q

Qg+1
in z`, H` =

a
q

Qg+1
out (L� z`)+Hout , (8.20)

and by defining the following new state variables x1 = Qin�Qout and x2 = 1/z`, then the following
second-order system can be obtained from (8.18) and (8.19):

ẋ1 = x2

h
q(Hin�Hout)�L

⇣
aQg+1

out

⌘i
�a

⇣
Qg+1

in �Qg+1
out

⌘
,

ẋ2 = 0. (8.21)

Notice that (8.21) has the following general form:


ẋ1
ẋ2

�
=


0 u
0 0

�
x1
x2

�
+


j
0

�
, (8.22)

y = x1,

where u =
⇥
q(Hin�Hout)�L

�
aQ2

out
�⇤

and j =�a
�
Q2

in�Q2
out

�
are known smooth functions.

For system (8.22), the following state observer for locating single leaks was proposed in Torres et al.
(2019):

 ˙̂x1
˙̂x2

�
=


0 u
0 0

�

| {z }
A


x̂1
x̂2

�
+


j
0

�
+


K1
K2

�
e,

ŷ =
⇥

1 0
⇤

| {z }
C

x̂, (8.23)

where x̂1 = Q̂in�Q̂out and x̂2 = 1/ẑ` are the states to be estimated. Moreover, e= y� x̂1 is the observation
error. K1 and K2 are elements of the gain vector K, which can be calculated as follows: K = S�1CT , where
S is the solution of the following matrix Lyapunov differential equation:

Ṡ =�lS�AT S�SA+CTC, (8.24)

with l > 0 and S(0)> 0.
To recover the estimation of the leak position from the state observer, x̂2 must be inverted: ẑ` = 1/x̂2.
The fundamental objective of the numerical simulations was to investigate the result of the leak loca-

tion by taking into account uncertainty in the parameter a , which is a key quantity used for describing
the head loss in a duct.

The uncertainty was modeled by a uniform probability density function (p.d.f.) given by U (a,b),
where a⇠ a�0.2a and b⇠ a +0.2a . A histogram of the p.d.f. for a is given in Fig. 8.8.

The leaks were simulated at four different positions: z` = [122.79 81.86 40.93 20.465] (m),
where L = 163.72 (m) is the total length of the simulated pipeline. The rest of the physical parame-
ters used to simulate the pipeline are given in Table 8.1.

The results of the leak location with friction uncertainty for the different position cases are summarized
in Table 8.6, which shows the estimate clearly deviates when the value of a is not exactly known. On
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Fig. 8.8: a uncertainty distribution

the contrary, in Fig. 8.9 is shown that the true leak position’s values are estimated when there is no
uncertainty in friction.
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Fig. 8.9: Leak position estimation with the true value for µ

Table 8.6: Mean and standard deviation of the leak position estimations

Leak position (m) Mean (m) Standard Deviation (m)
20.465 20.36 8.52
40.93 40.41 7.20
81.86 80.70 5.30

122.79 120.917 5.07
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8.7 Conclusions

This chapter has proposed a method based on the rigid water column model to calibrate the parameters
of a power law that describes the head loss of a pipeline. The method can be applied using real-time
information from, for example, SCADA or IoT systems. Some advantages of the proposed method are
listed below.

• The method permits calibrating a head loss model with only two parameters to be identified, instead
of calibrating a model with more than two parameters, such as the DW equation or the HW formula.

• The method is an alternative to calibrate a head loss model even though the physical parameters of the
pipeline, such as roughness or the cross-sectional area, are unknown.

• It allows finding a good set of parameters so that the power-law model can be adjusted accurately to
the head loss curve. Regarding this advantage, a comparison between the parameter estimation was
presented with the new proposition and the offline least squares algorithm performed using MATLAB.

• It provides similar results regardless of the pipeline operation region in which the oscillatory flow is
generated for the calibration.

• The method provides a good set of parameters so that the power-law model accurately describes the
head loss at all the operating points, regardless of whether the oscillatory flow has been generated
around an operating point in a small region. This is an advantage over other methods that require
information (pressure and flow rate) from all the operation points to obtain a satisfactory set of param-
eters.

• It can be applied to a long pipeline by measuring pressure at two different pipeline coordinates delim-
iting a short section of the pipeline.

• It can be used online together with leak diagnosis algorithms.
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�� Glossary

According to SAFEPROCESS convention of the International Federation of Automatic Control, here
the main notation and terminology used in the monograph are described. This convention is taken from
Blanke et al. (2006) for fault diagnosis and control. The glossary for the degradation analysis is taken
from Breton and Daigle (2019). One can also consult the references Puig et al. (2004a), Puig et al.
(2004b) and Verde et al. (2013) for the notation in Spanish.

Fault Detection

• Abrupt fault: Fault with effects that appear suddenly. An example is a fault modeled by a discontin-
uous function.

• Discrepancy: An abnormal behavior of a physical value or inconsistency that alter physical values
and the relationship between them.

• Failure: Permanent interruption of a system’s ability to perform a required function under specified
operating conditions.

• Fault: Unpermitted deviation of at least one characteristic property or one system parameter from its
standard condition.

• Fault detection: Determination of faults present in a system and time of detection.
• Fault diagnosis: Determination of kind, size, location, and time of occurrence of a fault. Fault diag-

nosis includes fault detection, isolation and estimation.
• Fault effect analysis: Study of the fault consequence and its is propagation throughout the system.
• Fault estimation: Calculation of the size and behavior of a fault over the time.
• Fault isolation: Determination of kind, location and time occurrence of a fault. It follows fault detec-

tion.
• Fault mode: Particular way in which a fault can occur. Each fault usually has associated specific

effects.
• Fault modeling: A quantitative or qualitative mathematical model that describes the fault behavior.
• Incipient fault: A fault with effects that occur in a progressive way. As example, a fault modeled by

a time function started with very small deviation from 0 as a ramp.

Fault Diagnosis

• Analytical redundancy: The use of two o more, but not necessary identical, ways to determine a
variable, where one way uses a mathematical process model in analytical form.

���
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• Redundancy: The existence of more than one set of components or data to know the status and
characteristics of a system.

• Hardware redundancy: The use of two o more independent devices or instruments to estimate a
specific function.

• Residual: Signals carrying fault information based on a deviation between measurement and model-
based computations. A residual describes a degree of consistency between the real and modeled sys-
tem.

• Residual evaluation: Analysis of the residue in order to detect, isolate or identify faults.
• Residual generation: algorithm to determine a residual from the known measurements and system’s

model.
• Threshold: Limit value of a residual deviation, so if it is exceeded, a fault is declared. It denotes the

residual value from which the existence of the fault is considered.
• Vote: Decision-making process based on joint indicators for a fault diagnosis.

Supervision

• Monitoring: It is the function of a real-time continuous record system, which can analyze a pro-
cess’s behavior to indicate anomalies. Another term used for this concept is surveillance and state
observation.

• Plant-wide supervision: It is the activity that ensures that the trajectories of the important variables
of a process follow the reference trajectories in an adequate way. This terminology is frequently used
for a global supervision.

• Supervision: Monitoring of a physical system and taking appropriate actions to maintain the operation
in the case of faults.

• Supervisor: Human or artificial operator who performs the supervision tasks by using fault diagnostic
systems, determines the fault and performs corrective actions in the presence of faults.

• Supervisory: A function that performs supervision by results of fault diagnosis determines remedial
action when needed and executes corrective actions to handle faults. This definition is also used for
local supervision.

Fault-Tolerant Control

• Active fault-tolerance control: A control system where the faults are explicitly detected and accom-
modated. This feature is opposite of a passive fault-tolerant system.

• Admissible control laws: Set of algorithms that can be implemented to solve a certain control problem
in fault condition.

• Control objective: Formulation of a certain control task by using requirements and assumptions for
the system variables.

• Control constraints: Set of functional relations that must satisfy a device or system imposed by
physical law or natural laws. It permits the variables to take certain values in the variable space.

• Fault accommodation: A change in the system’s behavior such that a fault does not produce an
undesired failure, and it is implemented in the two forms below:

– A corrective action based on a system operation change avoiding that a certain failure leads to an
undesired final effect.
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– An adjustment on the parameters of the control law to avoid the fault effects. In general the input
and output of the controller remains the same, and the control objective is achieved even with a
degraded performance.

• Fault-tolerance system: A systems where a fault is accommodated with or without performance
degradation, and a singles fault does not develop into a subsystem or system failure.

• Passive fault-tolerance: A system where faults are not explicitly detected and accommodated, but the
controller is designed to be insensitive to a certain set of faults.

• Reconfiguration: A change in the input and output of the controller by changes in the structure or its
parameters, but the control performance could be degraded.

• Standard control problem: It consists of the selection of a control law within an admissible set such
that the system satisfies the control objective, and, at the same time the physical constraints are not
violated.

Failure Prognosis

• Monotonicity: A metric that quantifies the monotonic trend in a prognostic feature as the system
evolves toward the failure state.

• Prognostics: Estimation of the current system state, and future load and uncertainty. This task predicts
at what time a component will reach an specific state.

• Prognosability: A metric of the variability of a feature at failure based on experiments.
• Remaining Useful Life: Time from the current instant to the time of failure or system health loss.

Some authors consider the remaining time to replace or repair a component.
• Trendability: A metric of the similarity between trajectories of a feature by several run-to failure

experiments.
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�� Acronyms

This section describes abbreviations frequently used in the text according to the standard of the Interna-
tional Federation of Automatic Control, Safe Process, and Mechanical Engineering communities.

AE Autoencoder
AI Artificial Intelligence
AISI American Iron and Steel Institute
ANN Artificial Neural Networks
ANOVA Analysis of Variance
ARR Analytic redundant relation
BLSTM Bidirectional Long Short-Term Memory Neural Network
BN Bayesian Networks
CCD Central Composite Design
C-MAPSS Commercial modular aero-propulsion system simulation
CNC Computer Numerical Control
CPOS Cutting Parameters Optimization and System
CTWC Cutting Tool Wear-Condition
CUSUM Accumulative summation
DNN Deep neural network
DoE Design of Experiments
EKF Extended Kalman filter
EOL End of life
FDI Fault Detection and Isolation
GA Genetic Algorithm
GONNS Genetically Optimized Neural and Network System
HMM Hidden Markov Model
HSM High-Speed Machining
IIoT Industrial Internet of Things
KF Kalman Filter
LP Linear Programming
LSE Least Squares Estimation
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MDP Markov Decision Process
MFCC Mel Frequency Cepstrum Coefficients
MIMO Multiple Inputs Multiple Outputs
ML Machine Learning
MSE Mean Square Error
NMPM Neural Milling Process Model
NSM Neural Simulator Model
PCA Principal Component Analysis
RG Residual Generator
RSM Response Surface Methodology
RUL Remaining useful life
SCADA Supervisory Control and Data Acquisition
SISO Single-input Single-output
SVDD Support vector data description



�� Variable�and�Parameter�Notation

Lists of abbreviations used in the text according to the standard of the SAFEPROCESS community of
the International Federation of Automatic Control .

Model and Variables Description

ẋ(t) = fm(x(t),u(t),q , f̄ (t), f (t))
y(t) = h(x(t),u(t),q , f̄ (t), f (t)) Nonlinear state model

ẋ(t) = Ax(t)+Bu(t)+E1 f̄ (t)+F1 f (t)+w(t)
y(t) = Cx(t)+Du(t)+E2 f̄ (t)+F2 f (t)+ v(t) Linear state model with additive disturbance

f̄ (t) 2 ¬d Disturbance or fault without interest

f (t) 2 ¬ f Fault vector

q 2 ¬s Parameter vector

u(t) 2 ¬m Input vector

x(t) 2 ¬n state vector

y(t) 2 ¬d Output vector

ai j coefficient of matrix A

G(s) Transfer matrix
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Las Series del Instituto de Ingeniería describen los resultados de algunas de las investi-

gaciones más relevantes de esta institución. Con frecuencia son trabajos in extenso de 

artículos que se publican en revistas especializadas, memorias de congresos, etc.

Cada número de estas Series se edita con la aprobación técnica del Comité Editorial del 

Instituto, basada en la evaluación de árbitros competentes en el tema, adscritos a insti-

tuciones del país y/o el extranjero.

Actualmente hay tres diferentes Series del Instituto de Ingeniería:

SERIE INVESTIGACIÓN Y DESARROLLO

Incluye trabajos originales sobre investigación y/o desarrollo tecnológico. Es continua-

ción de la Serie Azul u Ordinaria, publicada por el Instituto de Ingeniería desde 1956, la

cual actualmente tiene nueva presentación y admite textos en español e inglés.

SERIE DOCENCIA

Está dedicada a temas especializados de cursos universitarios para facilitar a estu-

diantes y profesores una mejor comprensión de ciertos temas importantes de los 

programas de estudio.

SERIE MANUALES

Abarca manuales útiles para resolver problemas asociados con la práctica profesional

o textos que describen y explican el estado del arte o el estado de la práctica en ciertos

temas. Incluye normas, manuales de diseño y de laboratorio, reglamentos, comenta rios 

a normas y bases de datos.

Las Series del Instituto de Ingeniería pueden consultarse gratuitamente

 desde la dirección electrónica del Instituto http://www.ii.unam.mx

(http://aplicaciones.iingen.unam.mx/ConsultasSPII/Buscarpublicacion.aspx)

y pueden grabarse o imprimirse en formato PDF desde cualquier computadora.
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